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Abstract

In Parts I and II of this series of papers, a practical simple ‘‘multi-mode theory’’, based on the
linearization of the non-linear algebraic equations, written on the modal basis, in the neighbourhood of
each resonance, has been developed for beams and fully clamped rectangular plates.1 Simple explicit
formulae have been derived, which allowed, via the so-called first formulation, direct calculation of the
basic function contributions to the first three non-linear mode shapes of clamped–clamped and clamped–
simply supported beams, and the two first non-linear mode shapes of FCRP. Also, in Part I of this series of
papers, this approach has been successively extended, in order to determine the amplitude-dependent
deflection shapes associated with the non-linear steady state periodic forced response2 of clamped–clamped
beams, excited by a concentrated or a distributed harmonic force in the neighbourhood of the first
resonance.

This new approach has been applied in the present work to obtain the NLSSPFR formulation for FCRP,
SSRP, and CCCSSRP, leading in each case to a non-linear system of coupled differential equations, which
may be considered as a multi-dimensional form of the well-known Duffing equation. The single-mode
assumption, and the harmonic balance method, have been used for both harmonic concentrated and
distributed excitation forces, leading to one-dimensional non-linear frequency response functions of the
plates considered. Comparisons have been made between the curves based on these functions, and the

*Corresponding author.
1 In the remainder of this paper, both ‘‘fully clamped rectangular plates’’ and ‘‘fully clamped rectangular plate’’ will

be denoted as FCRP, depending on the context, as in Ref. [10]. Simply supported rectangular plates will be denoted as

SSRP, and clamped–clamped–clamped simply supported rectangular plates as CCCSSRP.
2Non-linear steady state periodic forced response is denoted in what follows as NLSSPFR.
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results available in the literature, showing a reasonable agreement, for finite but relatively small vibration
amplitudes. A more accurate estimation of the FCRP non-linear frequency response functions has been
obtained by the extension of the improved version of the semi-analytical model developed in Part I for the
NLSSPFR of beams, to the case of FCRP, leading to explicit analytical expressions for the ‘‘multi-
dimensional non-linear frequency response function’’, depending on the forcing level, and the amplitude of
the response induced in the range considered for the excitation frequency.
r 2002 Published by Elsevier Science Ltd.

1. Introduction

The problem of plates vibration is of a continuing interest, due to their frequent use as
structural components, especially in aerospace [1]. The geometrically non-linear behaviour of
plates is encountered in many recent applications, in which aircraft panels are subjected to high
excitation levels, due to the engine jet, or to the atmospheric turbulence, which may exceed
120 dB. In such situations, linear theories fail in predicting deflections, strains, stresses and
frequencies [2]. The prediction of service fatigue life is based on r.m.s stress/strain, and
predominant response frequency, in conjunction with the stress versus cycles to failure (S–N)
data. Current analytical design methods for sonic fatigue prevention are based essentially on
linear theory. The use of linear analyses, as mentioned in the above reference, would lead to poor
estimation of panel fatigue life. Therefore, it is of crucial interest to develop practical non-linear
approaches, allowing the effect of the geometrical non-linearity, due to large displacement
amplitudes, to be taken into account in the design process.

In a previous series of papers [3–8], a semi-analytical model has been developed for non-linear
free vibrations of thin structures such as beams, plates, and shells. The non-linear vibration
problem was reduced to the iterative solution of a set of non-linear algebraic equations, which
allows the amplitude-dependent non-linear frequencies and mode shapes of the structure
considered to be determined. More recently, this model has been extended to the NLSSPFR of
beams [9,10]. The main feature of this approach is that it makes the geometrically non-linear
effects appear not only via the amplitude frequency dependence, which was the main concern of
most of the previous studies, but also via the dependence of the structure deflection shapes on the
amplitude of vibration [3–13]. This allows quantitative estimates of curvatures to be obtained,
with the associated non-linear stresses, in sensible regions of the structure, which may be of crucial
importance in the fatigue life prediction of structures working in a severe environment. The
problem of non-linear forced vibrations of rectangular plates has not been yet examined using the
semi-analytical approach described above, neither in its general formulation which was applied to
beams in Refs. [9,10], nor in its improved simplified form which was applied to the NLSSPFR of
beams in Ref. [11], and to the free response of FCRP in Ref. [12]. The purpose of the present
paper is the extension of the models developed previously, to some rectangular plate cases which
are excited by concentrated, or distributed harmonic forces, in order to derive the corresponding
multi-dimensional Duffing equation. The procedure for solution of the multi-mode model is then
discussed, and two degrees of approximations are proposed. The first approximation is based on
the single-mode approach, which takes into account the contribution of the first mode, in the
modal functions basis defined in Ref. [12], and denoted as the MFB, and neglects the other modal

M. El Kadiri, R. Benamar / Journal of Sound and Vibration 264 (2003) 1–352



function contributions. However, as the single-mode approach does not lead to any information
concerning the deflection shapes amplitude dependence, which is of crucial importance for
determining the associated non-linear curvatures, and non-linear stress patterns, an improved
simplified approach, similar to that applied to beams in Ref. [11], is developed in order to obtain
an explicit direct solution of the multi-mode model, for the NLSSPFR of FCRP, which is
expected to be very useful in further analytical developments, and also for engineering purposes.
This assumes, in the light of the numerical results previously obtained for FCRP in Ref. [12], that
the higher modal function contributions are not equal to zero, as in the single-mode approach, but
are small compared to the first modal function contribution. Then, by neglecting first and second
order terms in the system of non-linear algebraic equations, an explicit analytical solution is
obtained for the higher modal function contributions to the NLSSPFR of the rectangular plate
considered.

In the Section 2, a brief review of the general theory mentioned above is first presented for the
case of free vibrations, in order to introduce the notation and the basic concepts. Then, the model
is generalized in Section 3 to the NLSSPFR of FCRP. In Section 4, the solution of the multi-
dimensional Duffing equation, based on the harmonic balance method and the single-mode
approach, is given for various plate aspect ratios, various type of harmonic excitation, i.e.,
concentrated or distributed, and various levels of excitation. Also, a simplified theory for the
solution of the multi-mode model is presented, leading to analytical expressions for the higher
modal function contributions. The numerical results obtained, based on the two simplified
approaches mentioned above are then compared with previously published results, obtained by
other methods, such as the FEM, the HFEM, and the ANM.

2. A brief review of the theoretical formulation, based on Lagrange’s equations, for the geometrically

non-linear free response of FCRP

2.1. Introduction

The theoretical model based on Hamilton’s principle and spectral analysis, successfully used in
previous works to determine the non-linear mode shapes of beams, plates and shells [3–8], is used
here in order to determine the NLSSPFR of FCRP excited by concentrated or distributed
harmonic forces. As an introduction to Section 3, in which the model for the forced case is
presented, this section starts by giving a brief review of the theory developed in Refs [3–5] for the
free vibration case, in order to make it easy to the reader to understand the notation and the
analytical developments presented in the remainder of the paper. Also, the non-linear frequency
dependence on the amplitude of vibration, obtained via an exact elliptical solution of the non-
linear algebraic system, considered in the case of a single-mode approach, is given for some plate
cases and compared with other approximate solutions, previously published.

2.2. General model for non-linear free vibration of FCRP

Consider transverse vibrations of the plate shown in Fig. 1, having the characteristics given in
Appendix D. For such a plate, the strain energy V is given as the sum of the strain energy due to
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the bending Vb, and the membrane strain energy induced by large deflections Va. In Ref. [5,7], the
expressions used for Vb, Va, and the kinetic energy T have been extensively discussed on the basis
of a systematic comparison of the results obtained previously both experimentally and
theoretically, based on various approaches. The approximate expressions adopted were

Vb ¼
1

2

Z
S

D
@2W

@x2
þ
@2W

@y2

� �2

dS; ð1Þ

Va ¼
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Z
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� �2

þ
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@y
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 !2

dS; ð2Þ

T ¼ 1
2
rH

Z
S

@W

@t

� �2

dS ð3Þ

in which W is the transverse deflection function, and S the plate area. The expression for Vb is the
plate simplified bending strain energy expression, valid for the fully clamped boundaries
considered in Section 5.2 [14]. For the other boundaries cases, the general expression is given in
Appendix A. In all of the above expressions, terms involving the in-plane displacements U and V
and their partial derivatives have been omitted, as in Refs. [5,7]. In addition to the discussions
given in the above references for justifying such an assumption, the agreement found in the
present paper between the results obtained in the non-linear forced case, and those based on other
approaches, which are discussed in Section 4.4.2 confirms the validity of such an assumption for
reasonable ranges of vibration amplitudes. Assuming that the transverse displacement of a point
(x,y) of the plate mid-plane can be written as

W ðx; y; tÞ ¼ qkðtÞwkðx; yÞ ð4Þ

in which the repeated index k is summed over the range {1, y, n}, n being the number of basic
functions wk used. Substituting W in expressions (1)–(3) for Vb, Va, T and rearranging leads to

Vb ¼ 1
2
qiqjkij ; ð5Þ

Va ¼ 1
2
qiqjqkqlbijkl ; ð6Þ

T ¼ 1
2 ’qi ’qjmij ð7Þ

H

x

y

z 
, W

a

b

Fig. 1. Plate notation.
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in which mij, kij and bijkl are the general terms of the mass tensor, the rigidity tensor, and the non-
linear rigidity tensor defined in Refs. [3,5], and reproduced here in Appendix A. The indices i, j, k
and l are summed over 1, y, n.

The dynamic behaviour of the structure may be obtained by Lagrange’s equations for a
conservative system, which leads after calculation to

.qimir þ qikir þ 2qiqjqkbijkr ¼ 0; r ¼ 1; :::; n: ð8Þ

Using matrix notation, and the non-dimensional parameters defined in Ref. [5], and given in
Appendix A, system (8) can be written as

M�� �
qtt
� 	

þ K�� �
qf g þ 2 B� qf gð Þ

� �
qf g ¼ 0f g ð9Þ

in which qtt
� 	

denotes the second derivative of the column vector of generalized co-ordinates
qf gT¼ q1q2:::qn½ 	 with respect to the non-dimensional time parameter t ¼ ot: If harmonic motion

is assumed, as in Refs. [5,7], one can write

qkðtÞ ¼ ak sin ot and W ðx; y; tÞ ¼ wðx; yÞ sin ot ¼ Hakw�
kðx

�; y�Þsin ot: ð10Þ

Substituting Eq. (10) into Eq. (9) and applying the harmonic balance method leads to

K�� �

 o�2 M�� �
 �

Af g þ 3
2
B� Að Þ
� �

Af g ¼ 0f g ð11Þ

in which {A} is the column vector of basic function contribution coefficients {A}T=[a1a2yan].
Using the tensor notation, the above system may be written as


o�2aim
�
ir þ aik

�
ir þ

3
2
aiajakb�ijkr ¼ 0; r ¼ 12n: ð12Þ

The formulation was completed in Refs. [5,7] by replacing o*2 by its expression obtained from the
principle of conservation of energy, i.e.,

o�2 ¼
aiajk

�
ij þ aiajakalb

�
ijkl

aiajm
�
ij

: ð13Þ

Using a procedure similar to that adopted in many previous works [4,5,7,8,15–18], the
contribution of the predominant basic function participating in the non-linear mode shape
considered was fixed, and the other basic function contributions were calculated via numerical
solution of the remaining (n-1) non-linear algebraic equations.

2.3. Simplified multi-mode approaches for solution of the multi-mode model for geometrically non-

linear free vibrations of FCRP

The purpose of this subsection is to give a brief review of the first formulation presented in
Part II of this series of papers [12], for free vibration analysis of FCRP.

Consider large vibration amplitudes of a FCRP, having an aspect ratio a=b/a less than 1, in the
neighbourhood of its first resonant frequency. Following the choice of basic functions adopted in
Ref. [5], the plate deflections in the x and y directions are represented by clamped-clamped beam
functions. So, the simple index k of the contribution ak used in the series expansion (10) for the
plate deflection function w�

k may be replaced by a double index aij, which means that the plate
function w�

k is the product of the ith and jth clamped–clamped beam functions in the x and y

directions, respectively. To determine the first non-linear mode shape of FCRP, the linear rigidity
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tensor k�
ij and non-linear geometrical rigidity tensor b�ijkl have been calculated using the first nine

symmetric–symmetric plate basic functions, obtained as products of the first three symmetric
clamped–clamped beam mode shapes , in the x and y directions.

The first formulation is based on an approximation which assumes that the contribution vector
Af gT¼ a1:::an½ 	 can be written as a1e2:::en½ 	; with ei small compared to a1, for i=2—n. Then,

considering the expression aiajakb�
ijkr of Eq. (12) which involves summation for the repeated

indices i, j , k over the range {1,2,y,n}, both first and second order terms with respect to ei, i.e.,
terms of the type a2

1ekb�11kr; or of the type a1ejekb�
1jkr; are neglected. Therefore, the only remaining

term is a3
1b�

111r:
If k�

ir; for iar; is assumed to be negligible compared to k�
rr; with the objective of obtaining a

direct solution, system (12) permits the basic function contributions e2, e3,.., e9 of the second and
higher functions to be obtained explicitly, corresponding to a given value of the assigned first
basic function contribution a1, as follows

er ¼ 

3
2
a3

1b�
111r

k�
rr 
 o�2m�

rr

ðr ¼ 2; 3; :::; 9Þ: ð14Þ

In Part II of this series of papers [12], it was shown that since the BFB does not lead to a diagonal
rigidity matrix, application of the above formulation in this basis leads to poor results, and
consequently, the problem has been reconsidered in the modal function basis, denoted as MFB.

To reformulate the problem in MFB, the expansion of the transverse displacement function
w�ðx�; y�Þ in the form of the finite series: w�ðx�; y�Þ ¼ akw�

kðx
�; y�Þ; given in Eq. (10), is rewritten as

w�ðx�; y�Þ ¼ %akf
�
kðx

�; y�Þ: In the two above expressions, a summation is performed for the index k

over the range {1,y,n}. f�
kðx

�; y�Þ is the kth symmetric-symmetric FCRP linear mode shape.
These SSFCRP linear mode shapes were obtained by numerical solution of a linear eigenvalue
problem, similar to that defined by Eq. (34) of Ref. [12]. In the MFB, the non-linear algebraic
system (12) has been rewritten as


o�2
%as %m

�
sr þ %as

%k�
sr þ %as %au %av

%b�suvr ¼ 0; r ¼ 12n ð15Þ

in which %k�
sr; %m�

sr and %b�
suvr are the FCRP modal parameters calculated in the MFB. The analytical

expressions, and numerical values of these parameters for FCRP with a=0.6, and a=1, are given
in Appendix A, with the eigenvalues and eigenvectors obtained from the linear solution.
Assuming in the MFB a contribution vector %A

� 	T¼ %a1%e2:::%enf g; and applying an analysis similar
to that made above in the BFB, leads to

%er ¼ 

3
2 %a

3
1
%b�
111r

%k�
rr 
 o�2 %m�

rr

ðr ¼ 2; 3; ::::; 9Þ: ð16Þ

These simple expressions have led, in the case of FCRP with an aspect ratio a=0.6, to accurate
values for the basic function contributions, compared with the iterative numerical solution of the
non-linear algebraic system, for maximum plate vibration amplitudes, reached at the plate centre
(x*,y*) = (0.5,0.5), up to about 0.6 times the plate thickness, for the first non-linear FCRP mode
shape. It was shown in Ref. [12] that, for amplitudes of vibration up to once the plate thickness,
the error induced by this first formulation does not exceed 0.066% for the non-linear frequency,
and 5.62% for the associated non-linear bending stress obtained at point (0.25,0), chosen in the
region in which the maximum value of s�yb is reached.
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2.4. Exact solution, based on use of elliptic functions, for solution of the one-dimensional Duffing

equation, obtained by application of the single-mode approach to the multi-mode model for non-linear
free vibrations of FCRP

2.4.1. Introduction

In this subsection, non-linear free vibration of rectangular plates with various boundary
conditions is considered. The amplitude dependence of the non-linear frequency obtained via
exact elliptical solution of Eq. (11), based on the single-mode approach, is compared with other
previously published, approximate solutions. It should be noted that such an exact analytical
solution of the Duffing equation is known and has been mentioned for example in Ref. [9] (and in
Refs. [9,29] of Ref. [9]). The purpose of the present subsection is determination of the specific
solutions for FCRP, with the corresponding numerical values of the equation parameters, and use
of the power expansion of the exact solution obtained in order to determine acceptable
approximate expressions for non-linear frequencies, valid for a large interval of vibrations
amplitudes, exceeding the radius of convergence of the analytical series, based on the Pad!e
approximants. It should also be noted here that another exact solution of the non-linear equation
of motion, expressed in a manner that can be evaluated numerically to any desired degree of
accuracy, has also been presented in Ref. [19], based on a procedure which eliminates the
singularities in the expression of the non-linear frequency and yields a form which can be
integrated numerically.

2.4.2. Exact solution based on use of elliptic functions
Applying the one mode assumption to Eq. (9) leads to

m�
11o

2q1;tt þ
o
oL

� �2

q1 þ bq3
1

� �
¼ 0; ð17Þ

where b ¼ 2b�1111=k�
11: The exact mathematical solution of Eq. (17) can be given in terms of the

Jacobean elliptic function Cn [9]. The assumption that the solution q1(t) is periodic with a period
of 2p gives the final form of this solution:

q1ðtÞ ¼ a1Cnðgt; kÞ; ð18Þ

o
oL

� �2

¼

p2

4

� �
1 þ ba2

1


 �
KðkÞ½ 	2

; ð19Þ

KðkÞ ¼
Z p=2

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 
 k2sin2y

p ; ð20Þ

k2 ¼
ba2

1

ð2 þ 2ba2
1Þ
; ð21Þ

g ¼
oL

o

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ba2

1

q
ð22Þ
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in which k is the modulus of the elliptic function and g may be taken as the ‘‘circular frequency’’.
Using a perturbation method, as in Ref. [9], for small values of a1, the modulus k is also small,
Cnðgt; kÞ can be approximated by sinot.

Expanding the elliptic function K(k) as a power series of a1, Eq. (20) leads to

o
oL

� �2

¼ 1 þ 3
4
ba2

1 

3

128
b2a4

1 þ Oða6
1Þ: ð23Þ

Finally, the first approximation of the exact solution, obtained by truncating the above series at
the second order, is given by

q1ðtÞ ¼ a1 sin ot; ð24aÞ

o
oL

� �2

¼ 1 þ 3
4
ba2

1: ð24bÞ

The results obtained by the exact solution, and by the first approximation of the exact solution at
the second order, will be compared in Section 2.4.3 with those obtained by use of two Pad!e
approximants.

2.4.3. Improvement of the solution, based on use of the Pad!e approximants
An extensive discussion has been made in Ref. [9] concerning the limitation in the choice of the

polynomial approximation used in the power series expansion of the exact solution (20), given in
Eq. (23), because of the divergence of the solution obtained outside the zone of convergence. It
was demonstrated that increasing the order of the series does not increase the validity of the
solution because of the divergence beyond the radius of convergence. It appeared also in this
study that the second order approximated solution (24b) is the best one because it remains very
close to the exact solution over a large range of vibration amplitudes. It has been also shown that
use of the Pad!e approximant denoted as P[M,N], which is defined as the quotient of two
polynomials of degree M and N respectively, increases the range of validity of different
approximation methods based on the perturbation method. A criterion which has worked well
here is the choice of P[M,N] such that M
N=2. So, two approximants have been used here,
giving a good accuracy from comparison with the exact solution at large vibration amplitudes:

o
oL

� �2

¼ P½4; 2	ða1Þ ¼
1

32

128 þ 192ba2
1 þ 69b2a4

1

4 þ 3ba2
1

� �
; ð25Þ

o
oL

� �2

¼ P½6; 4	ða1Þ ¼
1

4

4096 þ 9216ba2
1 þ 6748b2a4

1 þ 1605b3a6
1

1024 þ 1536ba2
1 þ 559b2a4

1

 !
: ð26Þ

These relationships have been established in Ref. [9] for the beam case, but can also be used in the
FCRP case at large vibrations amplitudes, since the latter case is also governed by the same
equation, in which the value of the parameter b ¼ 2b�1111=k�

11 has to be calculated according to the
theory developed for plates in the previous sections.

It can be seen in Table 1, that for non-dimensional amplitudes of vibrations up to w�
max ¼ 2:5;

corresponding to a1=1, the solutions obtained by the three approximations, i.e., Eqs. (24b), (25)
and (26), are very close to those obtained by the exact solution. The differences between the exact
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solution and the approximations do not exceed 0.022% for P(4,2), 0.00037% for P(6,4), and
1.25% for the order 2.

3. Theoretical formulation for the geometrically NLSSPFR problem of FCRP excited harmonically

by concentrated or distributed forces

3.1. Introduction

The purpose of Section 3 is the extension of the model presented above for non-linear free
vibrations of FCRP, to the case of geometrically NLSSPFR of FCRP, excited harmonically by
concentrated or distributed forces. Then, various degrees of approximation will be examined for
the solution of the general model obtained, as discussed in Section 4.

3.2. Formulation of the problem of the NLSSPFR of FCRP in the BFB

Consider a FCRP excited by a concentrated harmonic force Fc applied at the point x0; y0ð Þ; or
by a distributed harmonic uniform force Fd, distributed over the range %S ( %S is the surface of the
plate or a part of it ). Fc and Fd may be written using the Dirac function d as

Fcðx; y; tÞ ¼ Fcdðx 
 x0Þdðy 
 y0Þsin ot; ð27Þ

Fd ðx; y; tÞ ¼ Fd sin ot if ðx; yÞA %S; ð28aÞ

Fdðx; y; tÞ ¼ 0 if ðx; yÞe %S: ð28bÞ

The corresponding generalized forces Fc
i ðtÞ and Fd

i ðtÞ in the BFB are given by

Fc
i ðtÞ ¼ Fcwiðx0; y0Þ sin ot ¼ f c

i sin ot; ð29aÞ

Fd
i tð Þ ¼ Fd sin ot

Z
%S

wiðx; yÞdxdy ¼ f d
i sin ot: ð29bÞ

Table 1

Comparison of the frequency ratio o/oL obtained by the exact elliptic solution with the improved approximate

solutions obtained by using the Pad!e approximants for FCRP

a1 ex-sol P(4,2) P(6,4) order 2

Eq. (19) Eq. (25) Eq. (26) Eq. (24b)

0.200 1.06162341 1.06162352 1.06162341 1.06190703

0.300 1.13337139 1.13337313 1.13337139 1.13455045

0.400 1.22612026 1.22613022 1.22612029 1.22905906

0.500 1.33527261 1.33530509 1.33527280 1.34081725

0.600 1.45705459 1.45712992 1.45705521 1.46588502

0.700 1.58854813 1.58868850 1.58854965 1.60114651

0.800 1.72755253 1.72777837 1.72755551 1.74423183

0.900 1.87241967 1.87274782 1.87242468 1.89336803

1.000 2.02191259 2.02235594 2.02192017 2.04723315
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The dimensionless generalized forces f �c
i and f �d

i corresponding, respectively, to the concentrated
force Fc at point (x0,y0), or its non-dimensional equivalent x�

0; y
�
0


 �
; and to the uniformly distributed

force Fd over the surface %S; or its non-dimensional equivalent %S�; for a FCRP having the
characteristics a, b, H and D, have been calculated in Appendix A. The expressions obtained are

f �c
i ¼

b3Fc

aDH
w�

i ðx
�
0; y

�
0Þ; ð30Þ

f �d
i ¼

b4Fd

DH

Z Z
s�

w�
i ðx

�; y�Þdx�dy�: ð31Þ

A forcing vector F�ðtÞ
� 	

is defined by: F�
i ðtÞ

� 	
¼ f�c

i

� 	
sin ot; or F�

i ðtÞ
� 	

¼ f�d
i

� 	
sin ot;

depending on the type of excitation considered. Adding the forcing term F� tð Þ
� 	

to the right
hand side of Eq. (9) written in the BFB leads to

M�� �
qtt
� 	

þ K�� �
qf g þ 2 B� qf gð Þ

� �
qf g ¼ F�ðtÞ

� 	
: ð32Þ

This equation appears as a generalization to the non-linear case of the classical forced response
matrix equation, well known in linear modal analysis theory [20] as

½M�	fqttg þ ½K�	fqg ¼ fF�ðtÞg ð33Þ

to which the correcting term 2 B� qf gð Þ
� �

qf g; corresponding to the non-linear geometrical rigidity is
added. If harmonic excitation is assumed, as in Eqs. (29a) and (29b), the linear system (33) leads
to a harmonic solution, which may be expressed analytically in the MFB, in which the system is
uncoupled. The response is obtained as a superposition of modal contributions, whose
expressions are given in Section 4. In the non-linear case, previous experimental and theoretical
works have shown that a harmonic distortion of the response occurs at large vibration
amplitudes, which is accentuated in the clamps region, even when the excitation is harmonic.
Since it was shown, via experimental measurements and a careful separation of harmonics, that
the harmonic distortion was spatially distributed, the non-linear response may be written as [3]

W ¼ Akf gT Wf g sin kot; ð34Þ

where Akf gT¼ ak
1ak

2 :::a
k
n

� �
is the matrix of coefficients corresponding to the kth harmonic, Wf gT¼

w1w2:::::::wn½ 	 is the basic spatial functions matrix, k is the number of harmonics taken into
account, and the usual summation convention on the repeated index k is used . Examination of
this effect would have exceeded the scope of the present work, which is restricted to the first
harmonic distribution amplitude dependence, so that the response is written as

W ðx; yÞ ¼ aiwiðx; yÞ sin ot: ð35Þ

The time-dependent contribution vector qf gT¼ q1q2:::qn½ 	 can therefore be replaced in Eq. (32) by
qf g ¼ Af g sin ot; with Af gT¼ a1a2:::an½ 	 representing the time-independent basic function

contributions vector. This leads to

K�� �

 o2 M�� �
 �

Af g sin2 ot þ 2 B� Að Þ
� �

Af g sin3 ot ¼ f�i
� 	

sin ot ð36Þ

in which f�i
� 	

equals f�c
i

� 	
or f�d

i

� 	
; depending on the type of excitation under examination.

Applying the harmonic balance method to Eq. (36) leads to

K�� �

 o2 M�� �
 �

Af g þ 3
2
B� Að Þ
� �

Af g ¼ f�i
� 	

: ð37Þ
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This equation appears as a generalization to the non-linear case of the classical eigenvalue
problem, well known in linear modal analysis theory, i.e.,

K�� �

 o�2 M�� �
 �

Af g ¼ f�i
� 	

ð38Þ

to which the geometrically non-linear rigidity term 3
2
B� Að Þ
� �

Af g has been added. Eq. (37) can be
written using the tensor notation as

aik
�
ir 
 o�2aim

�
ir þ

3
2
aiajakb�

ijkr ¼ f �
i i ¼ 1:::n: ð39Þ

The last non-linear algebraic system, corresponding to the NLSSPFR of FCRP, is similar to that
obtained for the free vibration case, i.e., Eq. (12), with three differences. (1) In the free case, i
varies from 2 to n, and the first equation is omitted, because the first contribution a1 was assigned,
as explained in the discussion following Eq. (13). (2) All of the n equations have a right-hand side
representing the generalised forcing term f �

i : (3) The frequency parameter o� does not represent,
as in Eq. (12), the non-linear resonant frequency associated with a given amplitude of vibration,
but represents the excitation frequency, which varies in the range chosen for performing the
excitation tests, or for examining theoretically the NLSSPFR. Also, it may be worth noting
here, that system (39) is formally identical to that obtained in Ref. [9], and used to obtain the
NLSSPFR of various beams [9,10].

3.3. Formulation in the MFB

As stated in the above section, the explicit analytical solution of the linear system (33) can be
obtained only if the problem is uncoupled via use of the normal modes basis of the FCRP
considered, i.e., the MFB. Also, it was shown in Ref. [12] that the accurate explicit analytical
solution corresponding to the non-linear free vibration case of FCRP can be obtained only in the
MFB. So, the NLSSPFR problem will also be formulated here in this appropriate basis, using the
notation of Ref. [12]. Consider now the NLSSPFR problem of FCRP, formulated in the BFB by
the non-linear system (32). In the MFB, the generalized forces %Fc

i ðtÞ and %Fd
i ðtÞ are given by

%F c
i ðtÞ ¼ Fcf�

i ðx0; y0Þ sin ot ¼ %f c
i sin ot; ð40aÞ

%F d
i tð Þ ¼ Fd sin ot

Z
%S

fiðx; yÞdxdy ¼ %f d
i sin ot ð40bÞ

in which the fi’s are the elements of the MFB, defined in Ref. [12]. The dimensionless generalized
forces %f �c

i and %f �d
i corresponding to a concentrated harmonic force Fc, applied at x�

0; y
�
0


 �
; and a

distributed harmonic force Fd, uniformly applied over the surface %S; for a FCRP having the
characteristics a, b, H and D are given by

%f �c
i ¼

b3Fc

aDH
f�

i ðx
�
0; y

�
0Þ; ð41Þ

%f �d
i ¼

b4Fd

DH

Z Z
%S�
f�

i ðx
�; y�Þdx�dy�: ð42Þ
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Rewriting Eq. (32) in the MFB gives

%M
�

h i
%qtt
� 	

þ %K
�

h i
%qf g þ 2 %B

�
%qf gð Þ

h i
%qf g ¼ %F

�ðtÞ
n o

ð43Þ

in which ½ %M�	 and ½ %K�	 are the diagonal mass and rigidity matrices calculated in the MFB, and ½ %B�	
is the non-linear rigidity tensor, calculated also in the MFB. Eq. (43) appears as a generalization
to the non-linear case of the classical linear forced response problem, well known in modal
analysis theory [20], i.e.,

%M
�

h i
%qtt
� 	

þ %K
�

h i
%qf g ¼ %F

�ðtÞ
n o

ð44Þ

to which the correcting term 2½ %B�
%q�
� 	
 �

	 %q�
� 	

; corresponding to the non-linear geometrical
rigidity, is added. Assuming, as in the previous section, that harmonic motion takes place, leads to

%qiðtÞ ¼ %ai sin ot ð45Þ

for i=1–n. Substituting Eq. (45) into Eq. (43), and applying the harmonic balance method, gives

%K
�

h i

 o�2 %M

�
h i� �

%A
� 	

þ 3
2
%B
�

%af gð Þ
h i

%af g ¼ %f
�
i

n o
: ð46Þ

This equation is the extension to the non-linear case of the classical linear eigenvalue problem,
obtained in linear modal analysis theory [20], i.e.,

%K
�

h i

 o�2 %M

�
h i� �

%A
� 	

¼ %f
�
i

n o
ð47Þ

to which the correcting term 3
2
B� Að Þ
� �

Af g; corresponding to the non-linear geometrical rigidity is
added. The linear response obtained from solution of Eq. (47) is given by a function W �

o� ðx�; y�; tÞ
obtained as a superposition of modal contributions:

W �
o� ðx�; y�; tÞ ¼ sin ot

X
i

%aif
�
i ðx

�; y�Þ ¼
X

i

%f �
i

ð %k�
ii 
 o�2 %m�

iiÞ
f�

i ðx
�; y�Þ sin ot: ð48Þ

The linear frequency response function (48) can be rewritten using the notation corresponding to
the MFB, and the repeated indices summation convention as

W �
o� ðx�; y�Þ ¼ %aif

�
i ðx

�; y�Þ sin ot: ð49Þ

Returning now to the main purpose, i.e., the NLSSPFR of FCRP, system (46) may be written
using the tensor notation as


o �2
%as %m

�
sr þ %as

%k�
sr þ

3
2 %as %au %av

%b�
suvr ¼ %f�r ; r ¼ 12n ð50Þ

which is a system of n coupled non-linear algebraic equations, whose solution should lead to a
multi-dimensional non-linear frequency response function, describing the behaviour of FCRP
subjected to high levels of harmonic excitation, so that the deflection shapes become amplitude
dependent, and exhibit in the neighbourhood of each resonant frequency multi-valued regions in
which the jump phenomenon may occur.
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4. Solutions of the coupled non-linear differential equations for the NLSSPFR of FCRP

4.1. Discussion of the solutions procedures

Before presenting in the next subsections the methods of solution proposed in the present paper
for the multi-dimensional Duffing equation (43) describing the NLSSPFR of FCRP, a discussion
of many aspects of the various solution procedures which may be adopted for such a coupled non-
linear problem is made here.

The modelling of very complicated problems, such as geometrically non-linear vibrations of
FCRP considered here, for which no exact solution is known, even in the linear case, involves
many choices based on the following observations:

(a) Due to the complexity of the real non-linear dynamic behaviour, and the variety of the
phenomena involved (harmonic distortion, internal resonance, bifurcation points, non-linear
coupling between modes, multiplicity of solutions, effect of damping, etc.), it is very difficult
to develop a reasonable model including all of the known effects. So, a given model
necessarily should be directed towards predicting specific effects, and hence, should be based
on a decision to include or not each of the known physical aspects of the non-linear dynamic
behaviour of the structure considered. Although this automatically limits the domain of
validity of the model, it seems normal to do so in the modelling of very complex problems,
because, as outlined in Ref. [21], each particular approach can only highlight one or a few
facets of the problem, and is valid under specific conditions. Of course, it is always good to
attempt and include the maximum number of effects in a unified model, when it is possible to
do so, but this should not make the formulation too complex, and understandable only by a
small number of experts. Also, the computing time should not become too costly, as discussed
below.

(b) One may be tempted to increase the numerical accuracy of the solution obtained, via an
increase in the number of degrees of freedom of the system, an increase in the complexity of
the formulation, and in the computing time. However, this does not seem to be always
justified, since the various assumptions involved in the theoretical formulation, and the
various approximations used in the solution process automatically limit the expected accuracy
of the solutions. In such conditions, attempting too exact a numerical solution, i.e., solutions
involving a large number of decimals, may be meaningless, and also often useless.

(c) A choice could be made between sacrificing, to a reasonable extent, the numerical accuracy of
the solution, and hence reducing its domain of validity, but focusing on the elegance and
simplicity of the description, or the rapidity of the solution. This strategy may be realistic in
many cases, in view of the applications made of the model, and is, to a great extent, justified
by the insight it gives into a given aspect of the physical behaviour, which is important from
the conceptual point of view. Also, it generally induces great economy and facility in the
solution process. In a paper entitled ‘‘Insight, not numbers’’ [22], it is stated that ‘‘The beauty
and elegance of a modal representation is that it describes the dynamic properties of a
structure in terms of simple oscillators and geometrically intuitive deformation patterns, and
that only a limited number of modes are necessary to specify the dynamic behaviour in any
given frequency band’’.
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Due to the above remarks, many strategies for solving the non-linear system (32) will be
considered below, responding to various choices among the points (a)–(c) presented above. Three
approximate methods of solution of the non-linear algebraic system are proposed and compared
with previous results. The first, based on the single-mode approach, assumes a significant
contribution %a1 of the first mode, and neglects completely the contributions %ar of the higher
modes, for r=2—n. The second and third assume that the higher mode contributions are not
equal to 0, but are small compared to the first contribution. This leads to explicit analytical
expressions for the NLSSPFR of FCRP, or to numerical results obtained via solution of reduced
linear systems of eight equations and eight unknowns, for each value of the level and the
frequency of the excitation. The advantages and disadvantages of each of the above methods have
been discussed in the general introduction of this paper. A numerical solution of the non-linear
system (32), based on an iterative procedure, for various FCRP aspect ratios will be presented
later.

4.2. Solutions based on the single-mode approach

4.2.1. Introduction

The single-mode assumption neglects all co-ordinates except a single ‘‘resonant’’ co-ordinate.
Thus, it reduces the multi-degree-of-freedom system to a single-degree-of-freedom system. It has
been shown in previous studies that such an assumption may not be very rigorous, with regard to
some effects in non-linear vibration of structures, such as the increase of curvature near the
clamps of a C–C beam [4], or the non-linear increase in curvatures and stresses in the clamps
regions of FCRP, both homogeneous and composite [15–17]. However, the single mode approach
has been very often used in the literature [23–29]. This is due to the great simplification it
introduces in the theory on one hand, and on the other hand because the error it introduces in the
estimation of the non-linear frequency remains very small for a large range of vibration
amplitudes, as has been shown for example in Ref. [12].

4.2.2. Formulations in the BFB and the MFB
In this section, in which the single-mode approach is applied in the BFB, the NLSSPFR of the

FCRP excited harmonically is assumed to involve only the first basic function w�
11: The excitation

frequency is chosen in the neighbourhood of the first resonant frequency. So, Eq. (32) reduces to

m�
11q1;tt þ k�

11q1 þ 2b�1111q3
1 ¼ f �

1 sinot ð51Þ

in which m�
11; k�

11; and b�1111 are the mass, rigidity, and non-linearity terms corresponding to the
first basic function, respectively, and f �

1 is the corresponding generalized force . Assuming a
harmonic response q1 ¼ a1sinot; and applying the harmonic balance method leads to

ðk�
11 
 o�2m�

11Þa1 þ 3
2
b�1111a3

1 ¼ f �
1 : ð52Þ

Introducing in Eq. (52) the linear frequency parameter o�2
L ¼ k�

11=m�
11 and rearranging leads to

o�

o�
L

� �2

¼ 1 þ 3
2
b�1111

a2
1

k�
11



1

k�
11

� �
f �
1

a1
: ð53Þ
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This equation is similar to Eq. (32) obtained in Ref. [9] for the beam case. Results based on
Eq. (53) are given in Section 4.4.2 for various FCRP aspects ratios and excitation levels, and
compared with previously published data.

In order to improve the accuracy of the approximation based on the single-mode approach, as
in the FCRP free vibration case, the single-mode approach can also be considered in the MFB,
which reduces Eq. (43) to

%m
�
11 %q1;tt þ %k�

11 %q1 þ 2 %b�
1111 %q

3
1 ¼ %f �

1 sin ot ð54Þ

in which %m�
11; %k�

11; and %b�1111 are the mass, rigidity, and non-linearity terms corresponding to the
FCRP first linear mode shape, respectively, and %f�1 is the corresponding generalized force.
Assuming a harmonic response %q1 ¼ %a1 sin ot and applying the harmonic balance method leads,
in a manner similar to that developed in the above paragraph, to

o�

o�
L

� �2

¼ 1 þ 3
2
%b�1111

%a2
1

%k�
11



1

%k�
11

� �
%f�1
%a1
: ð55Þ

This equation is formally identical to Eq. (53), in which the parameters calculated in the BFB are
replaced by those calculated in the MFB. Numerical results based on Eq. (53) and (55) are
discussed in Section 4.4.2.

4.3. Simplified theory for solution of the multi-mode model corresponding to the NLSSPFR of
FCRP

In the above section, solutions of the multi-mode model (39) and (50), based on the single-mode
approach, have been presented and compared with other results available in the literature.
Although it was shown that such an approach, in addition to the advantage of its great simplicity,
may lead to good results for reasonable ranges of excitation levels and vibration amplitudes, it
cannot be applied to high excitation levels, for which the contributions of the higher basic
functions to the response become very important.

The improved version of the semi-analytical model applied in Ref. [11] to the non-linear forced
response of beams, has been extended in the present work to the case of FCRP. It made it possible
to obtain analytically a more accurate estimation of the FCRP non-linear frequency response
functions, via concentrated or distributed harmonic excitation forces. These functions involve
the contributions of the higher basic functions and make it possible to take into account the
amplitude dependence of the deflection shapes induced by the geometrical non-linearity.

This approach assumes that the higher mode contributions (to the NLSSPFR of FCRP) are
small compared to the first basic function contribution but are not completely negligible as in the
single-mode approach. This leads to the following analysis

Consider the non-linear system (50) and apply the first formulation. It consists of neglecting in
the expression %as %au %av

%b�
suvr of Eq. (50), which involves summation for the repeated indices s, u, v

over the range {1, 2, y,n}, both first and second order terms with respect to %ei; i.e. terms of the
type %a2

1%ev
%b�11vr or of the type %a1%eu%ev

%b�1uvr: The only remaining term in the expression %as %au %av
%b�
suvr of

Eq. (50) is %a3
1
%b�111r: Eq. (50) becomes

ð %k�
rr 
 o�2

%m
�
rrÞ %ar þ 3

2 %a
3
1
%b�
r111 ¼ %f �

r for ðr ¼ 2; :::; nÞ: ð56Þ
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This system makes it possible one to obtain explicitly the modal contributions %a2; :::; %an

corresponding to a given value of the contribution %a1 as follows:

%ar ¼
%f �
r 
 3

2 %a
3
1
%b�
r111

%k�
rr 
 o�2 %m�

rr

ðr ¼ 2; :::; nÞ: ð57Þ

The first harmonic component of the NLSSPFR function W �
o�ðx

�; y�; tÞ is then given by

W �
o�ðx

�; y�; tÞ

¼
%f �
1 
 3

2 %a
3
1
%b�1111

ð %k�
11 
 o�2 %m�

11Þ
f�

1ðx
�; y�Þ þ

%f �
2 
 3

2 %a
3
1
%b�2111

ð %k�
22 
 o�2 %m�

22Þ
f�

2ðx
�; y�Þ þ � � � þ

%f �
9 
 3

2 %a
3
1
%b�
9111

ð %k�
99 
 o�2 %m�

99Þ
f�

9ðx
�; y�Þ

" #
sin ot:

ð58Þ

Eq. (58) is an extension to the non-linear case of Eq. (48) obtained in linear modal analysis, in
which the FCRP total response W �

o�ðx
�; y�; tÞ appears as the sum of the linear response

W �
o�lðx

�; y�; tÞ given by Eq. (48) and a non-linear term W �
o�nlðx

�; y�; tÞ given by

W �
o�nlðx

�; y�; tÞ

¼ 
3
2 %a

3
1

%b�
1111

ð %k�
11 
 o�2 %m�

11Þ
f�

1ðx
�; y�Þ þ

%b�
2111

ð %k�
22 
 o�2 %m�

22Þ
f�

2ðx
�; y�Þ þ ::::þ

%b�
9111

ð %k�
99 
 o�2 %m�

99Þ
f�

9ðx
�; y�Þ

" #
sin ot:

ð59Þ

The cubic non-linear term %a3
1 may be obtained for a given value of the excitation frequency

parameter o*, and a given value of the excitation force parameter %f �
1 ; via Eq. (55) based on the

single-mode approach. It is interesting to notice here that Eqs. (57) and (58) are formally identical
to Eqs. (64) and (65) obtained for the NLSSPFR of various beams in Ref. [11].

The simplified theory presented in this subsection focuses on non-linear vibrations of plates
using a multi-mode approach and taking into account the coupling between the higher vibration
modes. The solution obtained in Eq. (59) makes it possible to get directly the non-linear frequency
response function in the neighbourhood of the first mode. This gives not only the displacement at
the centre of the plate, as is usually the case, as a function of the non-linear frequency, but also the
plate response spatial distribution on its whole area, for each level of excitation. The deformed
deflection shapes, obtained by this approach, agree well with the experimental data carefully
measured in Ref. [13], and permit the associated non-linear stress distribution, which may be of a
crucial importance in the design process to be deduced easily.

4.4. Comparison of the solutions based on the single-mode approach, and the simplified multi-mode
approach, for the NLSSPFR of FCRP, with previous results obtained by others methods

4.4.1. Analytical details

In order to make comparisons of our results with those previously published , the different
choices of normalization have to be standardized as follows :

In Ref. [30], the deflection function W(x, y, t) was written in the form W ðx; y; tÞ ¼
HAqðtÞfðx; yÞ; where qðtÞ and fðx; yÞ are time and spatial functions, normalized in such a
manner that fmax=qmax=1. According to these notations, the maximum vibration amplitude
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Wmax ¼ HA: In the present work, Wmax is given in the BFB by Wmax ¼ Ha1w�
1ðCÞ; in which C

denotes the plate centre. So, the non-dimensional amplitude of vibration A; defined in Ref. [30], is
related to the parameters defined here by A ¼ a1w�

1ðCÞ: Using this notation, Eq. (53) can be
written as

o�

o�
L

� �2

¼ 1 þ
3

2

b�1111

k�
11

� �
A2

ðw�
1ðCÞÞ2



w�

1ðCÞf �
1

k�
11A

ð60Þ

which leads to

o�

o�
L

� �2

¼ 1 þ
3

2

b�1111

k�
11

� �
A2

ðw�
1ðCÞÞ2



F

A
: ð61Þ

Using the expression for f �
1 ; obtained from Eqs. (30) and (31), for i=1, leads to

Fd ¼
b3Fd

DH

1

k�
11

w�
1ðCÞ

Z Z
s�

w�
1ðx

�; y�Þdx�dy�; ð62Þ

Fc ¼
b3Fc

aDH

1

k�
11

w�
1ðCÞw�

1ðx
�
0; y

�
0Þ ð63Þ

corresponding to the cases of a distributed and a concentrated force, respectively. Similarly, in the
MFB A ¼ %a1f

�
1ðCÞ; which leads, after substitution and rearrangement to

o�

o�
L

� �2

¼ 1 þ
3

2

%b�1111

%k�
11

� �
A2

ðf�
1ðCÞÞ2



%F

A
; ð64Þ

where %F is defined in the case of a distributed and a concentrated force, respectively, by

%Fd ¼
b3 %Fd

DH

1

%k�
11

f�
1ðCÞ

Z Z
%s�
f�

1ðx
�; y�Þdx�dy�; ð65Þ

%Fc ¼
b3 %Fc

aDH

1

%k�
11

f�
1ðCÞf�

i ðx
�
0; y

�
0Þ: ð66Þ

As shown in Appendix B, the non-dimensional parameter P0 ¼ cF0=rH2o2 used in Refs. [30,31],
is related to the non-dimensional parameters defined here in the BFB and the MFB, respectively
by

P0 ¼ w�
1ðCÞ

f �
1

k�
11

and P0 ¼ f�
1ðCÞ

%f �
1

%k�
11

: ð67; 68Þ

The above expressions will be used for comparison purposes in the next section.

4.4.2. Comparison of numerical results

In order to make comparisons with previously published results, only the values of the
excitation forces found in the literature could be used. In Table 2 and Fig. 2, the values of the
forced vibration frequency ratio for FCRP subjected to a harmonic distributed force P0= 0.2 (Fd

=873.82N/m2), obtained by (a) solving Eq. (61) corresponding to the single-mode model
expressed in the BFB (rigidity k�

11 and non-linear rigidity b�
1111), (b) solving Eq. (64) corresponding
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to the single-mode model in the MFB (rigidity %k�
11 and non-linear rigidity %b�

1111), (c) using the
simplified theory for solving the multi-mode model leading to Eq. (58), are compared with
previously published results [25,30–32]. It can be concluded from Table 2 and Fig. 2 that the
present results are very close to those based on other methods, for displacement amplitudes up to
about 0.6 times the plate thickness. For higher amplitudes, situated between 0.6 and once the plate
thickness, the results obtained from the multi-mode model are, as may be expected, closer to those
obtained by the others numerical methods than those based on the single-mode approach. The
average and standard deviation of all of the results available, obtained by various methods,
are listed in Table 3. In Tables 4a and b, the percentage errors between the averages obtained in
Table 3, and the values obtained by the single-mode approach, i.e., Eq. (64), and the simplified
multi-mode approach, i.e., Eq. (58), are listed. It can be noted that these errors do not exceed 5%
in all cases. For small amplitudes, i.e., amplitude less than 0.6 times the plate thickness, the errors
induced by the two methods are comparable. For relatively high amplitudes, the error induced by
the single-mode approach slightly exceeds that induced by the simplified multi-mode approach.

To evaluate the effect of the plate ratio aspect, the values of the forced vibration frequency ratio
o/oL of FCRP, with different aspect ratios, calculated from Eq. (61), are presented in Table 5. It
can be seen that these values are very close to each other for this excitation level, but a trend of
increase of the aspect ratio o/oL may be noted when the aspect ratio decreases.

Forced responses of a fully clamped square plate, subjected to different distributed harmonic
forces, are shown in Fig. 3. It can be seen from these curves that the single-mode model can be

0.0 0.2 0.4 0.80.6 1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

ω ω/ l

w
* m

ax

1D in the BFB equation (61)

1D in the MFB equation (64)

First formulation (9D) in the MFB
equation (58)

 F.E.M  H.F.E.M  A.N.M

Fig. 2. Comparison of the forced response of a FCRP (a=1) subjected to harmonic distributed force Fd=0.2 obtained

with various present models. (a) Eq. (61), (b) Eq. 64, (c) Eq. (58), with previously published results, based on different

other models. (’) F.E.M; (� ) H. F.E.M.; (E) A.N.M
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Table 3

Average and standard deviation of the results given in Table 2 based on different approaches

Wmax/H Average Standard deviation

0.2 1.6373E
01 5.5671E
02


0.2 1.4245E+00 7.4695E
03

0.4 7.5614E
01 8.4475E
03


0.4 1.2536E+00 5.1992E
03

0.6 9.0141E
01 1.8527E
02


0.6 1.2161E+00 1.4038E
02

0.8 1.0145E+00 2.7555E
02


0.8 1.2367E+00 2.3215E
02

1 1.0944E+00 4.2860E
02


1 1.2634E+00 3.7858E
02

Table 4

Comparison between the average obtained in Table 3, and the results based on (a) single-mode approach, i.e., Eq. (64);

(b) simplified multi-mode approach, i.e., Eq. (58)

Wmax/H Results based on the single mode

approach

Average Percentage error between the

average and the single-mode

approach

(a)

0.2 0.147 1.6373E
01 1.18%


0.2 1.4211 1.4245E+00 0.24%

0.4 0.7649 7.5614E
01 0.62%


0.4 1.2588 1.2536E+00 0.36%

0.6 0.9262 9.0141E
01 1.75%


0.6 1.2346 1.2161E+00 1.31%

0.8 1.0438 1.0145E+00 2.07%


0.8 1.2608 1.2367E+00 1.70%

1 1.1535 1.0944E+00 4.18%


1 1.3155 1.2634E+00 3.68%

Wmax/H Results based on the simplified

multi-mode approach

Average obtained in

Table 3

Percentage error between the

average and the simplified multi-

mode approach

(b)

0.2 0.1375 1.6373E
01 1.85%


0.2 1.4207 1.4245E+00 0.27%

0.4 0.7585 7.5614E
01 0.17%


0.4 1.2562 1.2536E+00 0.18%

0.6 0.9142 9.0141E
01 0.90%


0.6 1.2276 1.2161E+00 0.82%

0.8 1.0238 1.0145E+00 0.66%


0.8 1.2467 1.2367E+00 0.71%

1 1.1226 1.0944E+00 2.00%


1 1.2913 1.2634E+00 1.97%
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used for relatively small amplitudes of vibration, up to 0.5 times the plate thickness, for all of the
levels of excitation considered.

In Table 6, the non-linear frequencies obtained by the single-mode model for different
amplitudes of vibrations are compared with those obtained by other models [3,31,33,34], and with
the multi-dimensional model. It can be concluded that for amplitudes of vibration up to 1* the

Table 5

Forced vibration frequency ratio o/oL for FCRP with different aspect ratios subjected to harmonic distributed force

P0=0.2 (Eq. (61))

A=Wmax/H a=1 a=0.8 a=0.6 a=0.4 a=0.2

+0.2 0.1475 0.1479 0.1492 0.1509 0.1523


0.2 1.4218 1.4218 1.4220 1.4222 1.4223

+0.4 0.7660 0.7664 0.7673 0.7687 0.7698


0.4 1.2596 1.2598 1.2605 1.2613 1.2619

+0.6 0.9285 0.9291 0.9308 0.9333 0.9353


0.6 1.2364 1.2368 1.2382 1.2400 1.2415

+0.8 1.0476 1.0484 1.0512 1.0551 1.0583


0.8 1.2639 1.2646 1.2669 1.2701 1.2728

+1 1.1588 1.1600 1.1640 1.1694 1.1739


1 1.3201 1.3212 1.3247 1.3295 1.3335

Fig. 3. Comparison of the forced response of a FCRP (a=1) subjected to harmonic distributed forces Fd=0.2 , Fd=2,

and Fd=5, obtained with present model Eq. (58)
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plate thickness, the values of free vibration frequency ratios o/oL, obtained by the single-mode
model, or by the multi-mode model, are comparable with those obtained by the others models.
This justifies use of the single-mode model for estimating in the free response case the non-linear
resonance frequencies.

5. SSRP and CCCSSRP

Some results, based on the approach developed in above sections, are presented here,
corresponding to SSRP and CCCSSRP. In Table 7 and Fig. 4, comparison is made between the
results obtained here, based on the single-mode approach, for SSRP subjected to a harmonic
distributed forces, with the results obtained in Ref. [25] via a finite element formulation. It can be
seen that the single-mode model gives results which are very close to those previously published
for amplitudes of vibration up to about 1* the plate thickness. Details concerning the simply
supported plate parameters calculation are given in Appendix C.

Table 8 and Fig. 5 correspond to the single-mode approach applied to the case of
CCCSSRP.

Table 6

Comparison of free vibration frequency ratios o/oL for immovable fully clamped square isotropic plates

Wmax/H Ref. [33] Ref. [34] Ref. [31] Ref. [31] 1-D present work 9-D Ref. [3]

0.2 1.0068 1.0095 1.0079 1.0072 1.0070

0.6 1.0600 1.0825 1.0632 1.0647 1.0632 1.0607

1 1.1599 1.2149 1.1670 1.1668 1.1670 1.1573

Table 7

Forced vibration frequency ratio o/oL for a simply supported square plate subjected to harmonic distributed force

P0=0.2 (Pd=873.82 N/m2

A=Wmax/H Eq. (61) ANM [32] Simple elliptic

response [30]

FEM +

linearization [25]

Finite element 54

d.o.f. [30]

+0.2 0.193985 0.2374288 0.1944 0.1622 0.1932


0.2 1.426755 1.4333909 1.4281 1.4235 1.4274

+0.4 0.804378 0.8154793 0.8102 0.8052


0.4 1.282975 1.2880868 1.2874 1.2839

+0.6 0.998339 1.0145738 1.0084 0.9506 0.9984


0.6 1.289450 1.2990543 1.2983 1.2531 1.2898

+0.8 1.155506 1.1800401 1.1703 1.1528


0.8 1.354659 1.3719442 1.3686 1.3524

+1 1.30945 1.3436439 1.3283 1.2075 1.3004


1 1.454139 1.4809742 1.4276 1.3632 1.4460
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6. General conclusion

A semi-analytical approach to the non-linear dynamic response problem of beams has been
developed, based on Lagrange’s equations, and the harmonic balance method in Refs. [9,10]. This
method has been successfully used here to determine the amplitude frequency dependence for the
non-linear steady state periodic forced vibrations of FCRP. The dynamic problem is reduced to a
set of non-linear algebraic equations depending on the classical rigidity and mass tensors, and a

0.0 0.2 0.4 0.8 1.00.6 1.2 1.4 1.6 1.8 2.0

0.0

0.2

  0.4

0.6

0.8

1.0

F.E.M[25] without IDIW
m

ax
/h

 ω*/ωl* 

Fig. 4. Comparison of the forced response of a SSRP (a=1) subjected to harmonic distributed forces Fd=0.2, obtained

with present model Eq. (61), with a F.E. Model [25].

Table 8

Forced vibration frequency ratio o/oL for a CCCSS square plate subjected to harmonic distributed force P0

A=Wmax/H P0=0.1 P0=0.2

+0.2 0.7233 0.1528


0.2 1.2341 1.4223

+0.4 0.9180 0.7699


0.4 1.1587 1.2620

+0.6 1.0207 0.9356


0.6 1.1727 1.2417

+0.8 1.1162 1.0587


0.8 1.2230 1.2731

+1 1.2163 1.1744


1 1.2959 1.3339
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fourth order tensor due to the non-linearity. The single-mode analysis is presented here for the
free and forced cases, leading to results which are in good agreement with those published
previously.

An approach similar to that used in Refs. [11,12], for solving the multi-dimensional Duffing
equation, for the non-linear free and NLSSPFR vibrations of beams, and the non-linear free
vibrations of FCRP has been applied here to the NLSSPFR of FCRP. It has enabled explicit
determination of the non-linear multi-mode steady state periodic forced response, for relatively
small but finite vibration amplitudes, up to 0.8 times the plate thickness. The form of the explicit
solution appears as a generalization to the non-linear case of the classical linear forced modal
response. This may appear as one more step towards the development of the ‘‘non-linear modal
analysis theory’’ mentioned in Refs. [11,12]. The single-mode model may be used to describe the
dynamic problem, for vibration amplitudes up to 0.6 times the plate thickness, for the NLSSPFR
of FCRP, and up to once the plate thickness for the NLSSPFR of SSRP. For higher amplitudes
of vibrations, better results have been obtained by using a simplified multi-mode model for the
steady state periodic forced response.

In addition to a better estimate of the non-linear frequency response function for a given level
of excitation, the multi-mode simplified model makes it possible to obtain directly the amplitude-
dependent deflection shapes of the rectangular plates at large vibration amplitudes, which is one
of the most important features of the NLSSPFR of such structures at large vibration amplitudes,
due to its important effect on curvatures and non-linear stresses.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fd=0

Fd=0.1

Fd=0.2

  

ω*/ωl*

W
m

ax
/h

Fig. 5. Forced response of a CCCSSRP (a=1) subjected to harmonic distributed force Fd obtained with present model

(Eq. (61)).
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Appendix A. Tensors definitions

mij ¼ rH

Z
S

wi x; yð Þwj x; yð Þ dx dy; ðA:1Þ

kij ¼
Z

S

D
@2wi

@x2
þ

@2wi

@y2

� �
@2wj

@x2
þ

@2wj

@y2

� �
dxdy ðA:2Þ

bijkl ¼
3D

H2

Z
S

@wi

@x

� �
@wj

@x

� �
þ

@wi

@y

� �
@wj

@y

� �� �
@wk

@x

� �
@wl

@x

� �
þ

@wk

@y

� �
@wl

@y

� �� �
dxdy ðA:3Þ

wiðx; yÞ ¼ Hw�
i

x

a
;
y

b

� �
¼ Hw�

i ðx
�; y�Þ ðA:4Þ

o2

o�2 ¼
D

rHb4
; ðA:5Þ

kij

k�
ij

¼
DaH2

b3
; ðA:6Þ

mij

m�
ij

¼ rH3ab; ðA:7Þ

bijkl

b�ijkl

¼
DaH2

b3
: ðA:8Þ

A.1. Linear and non-linear modal parameters for the FCRP first non-linear mode shape (aspect

ratio a=0.6)

(1) Values of non-linear FCRP modal parameters: %b�
i111 for the first non-linear FCRP mode shape

%b�1111 ¼ 1461:2099 ðMFBÞ; b�1111 ¼ 1586:7826 ðBFBÞ;

%b�2111 ¼ 609:1280

%b�3111 ¼ 178:0239

%b�4111 ¼ 964:3785

%b�5111 ¼ 
 47:9024

%b�6111 ¼ 202:5182

%b�7111 ¼ 
 2298:7265

%b�8111 ¼ 1164:5572

%b�9111 ¼ 
 198:9794

M. El Kadiri, R. Benamar / Journal of Sound and Vibration 264 (2003) 1–35 25



(2) Rigidity matrix for the first non-linear mode shape of FCRP with an aspect ratio a=0.6
expressed in the BFB

k�ij

h i
¼

674:4143 
86:1874 
67:4566 
86:1860 68:1604 53:3234 
67:4299 53:3234 41:7161


86:1874 15 558:7014 
215:8281 68:1604 
692:9366 170:3977 53:3234 
542:1252 133:3061


67:4565 
215:8281 91 540:9905 53:3234 170:3977 
1850:0956 41:7161 133:3061 
1447:5055


86:1860 68:1604 53:3234 3271:1858 
692:9313 
542:1285 
215:5138 170:3977 133:3061

68:1604 
692:9366 170:3977 
692:9313 23 556:5089 
1732:6789 170:3977 
1732:5269 425:9869

53:3234 170:3977 
1850:0956 
542:1285 
1732:6789 109 839:1056 133:3061 425:9869 
4626:2467


67:4299 53:3234 41:7161 
215:5138 170:3977 133:3061 14 391:9895 
1850:0548 
1447:3859

53:3234 
542:1252 133:3061 170:3977 
1732:5269 425:9869 
1850:0548 44 977:6201 
4625:5414

41:7161 133:3061 
1447:5055 133:3061 425:9869 
4626:2467 
1447:3859 
4625:5414 15 0903:9226

2
66666666666666664

3
77777777777777775

:

(3) First nine SSFCRP linear mode shapes (a=0.6)

/�
1 ¼

0:9994

0:0055

0:0007

0:0329

-0:0020

-0:0004

0:0052

-0:0012

-0:0003

2
66666666666666664

3
77777777777777775

; /n

2 ¼

0:0329

0:0041

0:0006

-0:9987

-0:0342

-0:0056

-0:0181

0:0020

0:0007

2
66666666666666664

3
77777777777777775

; /�
3 ¼

0:0045

0:0217

0:0005

0:0178

0:0106

0:0013

-0:9976

-0:0611

-0:0127

2
66666666666666664

3
77777777777777775

; /�
4 ¼

0:0054

-0:9954

-0:0026

-0:0005

-0:0903

0:0002

-0:0211

-0:0249

0:0002

2
66666666666666664

3
77777777777777775

; /�
5 ¼

0:0037

-0:0920

-0:0024

-0:0343

0:9919

0:0195

0:0032

0:0779

0:0004

2
66666666666666664

3
77777777777777775

;

/�
6 ¼

0:0012

-0:0164

-0:0015

0:0059

-0:0791

-0:0054

-0:0625

0:9938

0:0427

2
66666666666666664

3
77777777777777775

; /�
7 ¼

-0:0007

-0:0025

0:9937

-0:0000

-0:0000

0:1073

0:0001

0:0006

0:0325

2
66666666666666664

3
77777777777777775

; /�
8 ¼

0:0006

0:0023

-0:1102

-0:0048

-0:0196

0:9879

-0:0003

-0:0009

0:1070

2
66666666666666664

3
77777777777777775

; /�
9 ¼

0:0002

0:0010

-0:0206

0:0012

0:0053

-0:1097

-0:0100

-0:0435

0:9927

2
66666666666666664

3
77777777777777775

:

The above vector components are given in the BFB={w�
11; w�

13; w�
15; w�

31; w�
33; w�

35; w�
51; w�

53; w�
55}.

(4) Diagonal rigidity matrix for the first non-linear mode shape of FCRP with an aspect ratio

a=0.6 expressed in MFB
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%k
�
ij

h i
¼

670:4738

3242:5882

14 261:2275

15 483:2756

23 475:3007

45 040:8070

91 294:6209

109 581:9417

151 664:2037

2
66666666666666664

3
77777777777777775

:

A.2. Linear and non-linear modal parameters for the FCRP first non-linear mode shape aspect ratio
a=1

(1) Values of non-linear FCRP modal parameters: %b�
i111 for the first non-linear FCRP mode shape

a=1

%b�1111 ¼ 2782:9122 ðMFBÞ; b�1111 ¼ 3001:8788 ðBFBÞ;

%b�2111 ¼ 
 6:1729

%b�3111 ¼ 
 2177:8035

%b�4111 ¼ 
 540:2969v

%b�5111 ¼ 
 14:4508

%b�6111 ¼ 3028:7144

%b�7111 ¼ 
 71:5744

%b�8111 ¼ 2037:8700

%b�9111 ¼ 505:4647:

(2) Rigidity matrix for the first non-linear mode shape of FCRP with an aspect ratio a=1
expressed in the BFB

k�ij

h i
¼

1303:8427 
239:4063 
187:3238 
239:4063 189:3345 148:1207 
187:3238 148:1207 115:8782


239:4063 17 552:0347 
598:8730 189:3345 
1924:8110 473:3270 148:1207 
1505:8742 370:2947


187:3238 
598:8730 96 135:4248 148:1207 473:3270 
5139:0690 115:8782 370:2947 
4020:5685


239:4063 189:3345 148:1207 17 552:0347 
1924:8110 
1505:8742 
598:8730 473:3270 370:2947

189:3345 
1924:8110 473:3270 
1924:8110 48 803:1047 
4812:4667 473:3270 
4812:4667 1183:2970

148:1207 473:3270 
5139:0690 
1505:8742 
4812:4667 155 998:4600 370:2947 1183:2969 
12 848:8262


187:3238 148:1207 115:8782 
598:8730 473:3270 370:2947 96 135:4248 
5139:0690 
4020:5685

148:1207 
1505:8742 370:2947 473:3270 
4812:4667 1183:2969 
5139:0690 155 998:4600 
12 848:8262

115:8782 370:2947 
4020:5685 370:2947 1183:2969 
12 848:8262 
4020:5685 
12 848:8262 317 759:6649

2
66666666666666664

3
77777777777777775

:
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(3) First nine SSFCRP linear mode shapes (a=1)

/�
1 ¼

-0:9998

-0:0142

-0:0020

-0:0142

0:0031

-0:0009

-0:0020

0:0009

0:0004

2
66666666666666664

3
77777777777777775

; /�
2 ¼

0:0000

-0:7070

-0:0060

0:7070

0:0000

0:0099

0:0060

-0:0099

0:0000

2
66666666666666664

3
77777777777777775

; /�
3 ¼

0:0197

-0:7041

-0:0039

-0:7041

-0:0892

-0:0083

-0:0039

-0:0083

0:0013

2
66666666666666664

3
77777777777777775

; /�
4 ¼

-0:0049

0:0633

0:0062

0:0633

-0:9941

-0:0432

0:0062

-0:0432

0:0003

2
66666666666666664

3
77777777777777775

; /�
5 ¼

0:0000

0:0051

-0:7040

-0:0051

0:0000

-0:0656

0:7040

0:0656

0:0000

2
66666666666666664

3
77777777777777775

/�
6 ¼

-0:0025

-0:0048

0:7040

-0:0048

0:0028

0:0615

0:7040

0:0615

0:0326

2
66666666666666664

3
77777777777777775

; /�
7 ¼

0:0000

0:0105

-0:0655

-0:0105

0:0000

0:7040

0:0655

-0:7040

0:0000

2
66666666666666664

3
77777777777777775

; /�
8 ¼

-0:0015

0:0039

0:0635

0:0039

0:0619

-0:6987

0:0635

-0:6987

-0:1084

2
66666666666666664

3
77777777777777775

; /�
9 ¼

0:0003

0:0015

-0:0162

0:0015

0:0070

-0:0782

-0:0162

-0:0782

0:9936

2
66666666666666664

3
77777777777777775

:

The above vector components are given in the BFB={w�
11; w�

13; w�
15; w�

31; w�
33; w�

35; w�
51; w�

53; w�
55}.

(4) Diagonal rigidity matrix for the first non-linear mode shape of FCRP with an aspect ratio a=1
expressed in MFB

%k
�
ij

h i
¼

1295:9230

17 328:5273

17 488:9860

148 625:3226

95 511:7737

95 653:9895

155 357:1090

156 054:9693

319 922:3785

2
66666666666666664

3
77777777777777775

:
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Appendix B. Details of numerical comparisons for a distributed force

B.1. The single-mode approximation in the BFB

ðk11 
 o2m11Þq1 þ 3
2
b1111q3

1 ¼ F0 sin ot

Z
S

w1ðx; yÞ dxdy: ðB:1Þ

In the present model

W1ðx; y; tÞ ¼ Hw�
1ðx

�; y�Þq1ðtÞ; ðB:2Þ

q1ðtÞ ¼ a1 sin ot ðB:3Þ

which leads to

w1ðx; yÞ ¼ Ha1w�
1ðx

�; y�Þ; ðB:4Þ

and

wmax ¼ Ha1w�
1

1
2;

1
2


 �
: ðB:5Þ

In the model presented in Ref. [30]:

w1ðx; tÞ ¼ HAqðtÞfðx; yÞ; ðB:6Þ

so

wmax ¼ HA: ðB:7Þ

To compare the present results with those given in Ref. [30],

A ¼ a1w�
1

1
2
; 1
2


 �
: ðB:8Þ

Eq. (B.1) can be written in non-dimensional form as

DaH2

b3
k�

11 
 o2rH3abm�
11

� �
a1 þ 3

2

DaH2

b3
b�1111a3

1 ¼ a ðB:9Þ

Substituting the expression for the non-linear frequency o2 ¼ o�2D= rHb4

 �

in Eq. (B.9) leads to

DaH2

b3
ðk�

11 
 o�2m�
11


 �
a1 þ 3

2
b�

1111a3
1Þ ¼ a ðB:10Þ

The right-hand side of Eq. (B.10) can be expressed using non-dimensional parameters as follows:

k�
11 
 o�2m�

11 þ
3
2
b�1111a2

1 ¼
F0b4

a1DH

ZZ
%s�

w�
1ðx

�; y�Þdx�dy� ðB:11Þ

which is equivalent to:

1 

o�2

o�2
l

þ 3
2
b�

1111

a2
1

k�
11

¼
F0b4

a1DHk�
11

ZZ
s�

w�
1ðx

�; y�Þdx�dy� ðB:12Þ
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which can also be written as

o�

o�
l

 !2

¼ 1 þ 3
2

b�
1111

k�
11

a2
1 


f �
1

k�
11a1

ðB:13Þ

with

f �
1 ¼

F0b4

DH

ZZ
s�

w�
1ðx

�; y�Þdx�dy�: ðB:14Þ

In Ref. [30], the non-dimensional force P0 is defined as

P0 ¼
cF0

rH2o2
with c ¼

RR
fðx; yÞdxdyRR
f2ðx; yÞdxdy

ðB:15; 16Þ

in which f is the normalized mode shape, and F0 is the amplitude of the external applied force
(N/m2). Combining Eqs. (B.4) and (B.6) leads to

fðx; yÞ ¼
a1

A
w�

1ðx
�; y�Þ: ðB:17Þ

Substituting the expression for f given in Eq. (B.17) into (B.16) gives:

P0 ¼
cF0

rH2o2
¼

RR
fðx; yÞ dx dyRR
f2ðx; yÞ dx dy

F0

rH2
D

rHb4
o�2

¼

a1

A

RR
w�

1 dx dy

a2
1

A2

RR
w�2

1 dx dy

F0b4

HD
k�

11

m�
11

¼
A

a1

Z Z
w�

1 dx dy
F0b4

HDk�
11

¼
A

a1

f �
1

k�
11

¼ w�
1

1
2
; 1
2


 � f �
1

k�
11

: ðB:18Þ

B.2. The single-mode approximation in the MFB

In the same manner, to compare the present results with those of Ref. [30],

A ¼ %a1f
�
1

1
2
; 1
2


 �
; ðB:19Þ

ð %k11 
 o2
%m11Þ %q1 þ 3

2
%b1111 %q

3
1 ¼ F0sinot

Z
S

f1ðx; yÞdxdy: ðB:20Þ

Eq. (B.20) can be written in non-dimensional form as

DaH2

b3
%k�
11 
 o2rH3ab %m

�
11

� �
%a1 þ 3

2

DaH2

b3
%b�1111 %a

3
1 ¼ %a ðB:21Þ

which is equivalent, if non-dimensional parameters are used, to

%k�
11 
 o�2

%m
�
11 þ

3
2
%b�1111 %a

2
1 ¼

F0b4

%a1DH

ZZ
s�
f�

1ðx
�; y�Þdx�dy� ðB:22Þ

which can be written as

o�

o�
l

 !2

¼ 1 þ 3
2

%b�
1111

%k�
11

%a2
1 


%f �
1

%k�
11 %a1

ðB:23Þ
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with

%f �
1 ¼

F0b4

DH

ZZ
s�
f�

1ðx
�; y�Þdx�dy� ðB:24Þ

and

P0 ¼
cF0

rH2o2
¼

RR
fðx; yÞ dx dyRR
f2ðx; yÞ dx dy

F0

rH2
D

rHb4
o�2

¼
%a1=A

RR
f�

1 dx dy

%a2
1=A

2
RR

f�2
1 dx dy

F0b4

HD
%k�
11

%m�
11

¼
A

%a1

Z Z
f�

1 dx dy
F0b4

HD %k�
11

¼
A

%a1

%f �
1

%k�
11

¼ f�
1

1
2
; 1
2


 � %f �
1

%k�
11

: ðB:25Þ

Appendix C. Simply supported plates

The linear mode shapes for a simply supported rectangular plate are given by

wmn ¼ hsin
mpx

a
sin

npy

b
ðC:1Þ

in which m and n are integers. The first mode shape, corresponding to m=n=1 is given by

w11ðx; yÞ ¼ h sin
px

a
sin

py

b
¼ h sinpx�sinpy�; ðC:2Þ

the associated non-dimensional mode is

w�
11ðx; yÞ ¼ sinpx�sinpy�: ðC:3Þ

C.1. Expressions of the axial strain energy

If the in-plane displacements are taken into account, the expression for the axial strain energy is

Va ¼
3D

2H2

Z
S

@W1

@x

� �2

þ
@W1

@y

� �2
" #2

dS ¼
DaH2

b3

Z
S�

3

2
a2@W �

1

@x�

� �2

þ
@W �

1

@y�

� �2
" #2

dS� ðC:4Þ

from Eq. (6) in which ai ¼ aj ¼ ak ¼ al ¼ a1 sin ot; we have

Va ¼ 1
2a

4
1b1111 sin4 ot ðC:5Þ

with

b�
1111 ¼

Z
S�

3 a2@W �
1

@x�

� �2

þ
@W �

1

@y�

� �2
" #2

dS �� : ðC:6Þ
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After substitution of Eq. (C.3) into (C.6), we obtain

b�1111 ¼
27p4

64
a8 þ

8a4

9
þ 1

� �
: ðC:7Þ

C.2. Expression for the bending strain energy

The expression for the bending strain energy is given in Ref. [14]:

Vb ¼
D

2

Z
S

@2W1

@x2
þ
@2W1

@y2

� �2

þ2 1 
 nð Þ
@2W1

@x@y

� �2



@2W1

@x2

� �
@2W1

@y2

� �� � !
dS

" #
ðC:8Þ

using Eq. (C.2) and (C.8), one can easily obtain

Vb ¼
DaH2

b3

Z
S�

a4

2

@2W �
1

@x�2

� �2

þ
1

2

@2W �
1

@y�2

� �2

þ 1 
 nð Þa2 @2W �
1

@x�@y�

� �2

þna2 @2W �
1

@x�2

� �
@2W �

1

@y�2

� �
dx� dy�: ðC:9Þ

Therefore

k�
11 ¼

Z
S�
a4 @2W �

1

@x�2

� �2

þ
@2W �

1

@y�2

� �2

þ 2 1 
 nð Þa2 @2W �
1

@x�@y�

� �2

þ2na2 @2W �
1

@x�2

� �
@2W �

1

@y�2

� �
dx� dy�: ðC:10Þ

k�
11 ¼

p4

2
a2 þ 1

 �2

: ðC:11Þ

for a ¼ 1; we have k�
11 ¼ 2p4D194:8182; and b�1111 ¼ 39p4=32D118:7028:

Appendix D. Nomenclature

General notations

a,b length, width of the plate
A non-dimensional amplitude of vibration defined in the BFB by A ¼ a1w�

1ðCÞ ,
and in the MFB by A ¼ %a1f

�
1ðCÞ

ANM asymptotic-numerical method
BFB beam function basis
c

a parameter defined by c ¼

RR
fðx; yÞdxdyRR
f2ðx; yÞdxdy

with f(x,y) representing the

normalized spatial function satisfying fmax=1 [31].
C plate centre
D bending stiffness, D ¼ EH3=12ð1 
 n2Þ
E Young’s modulus
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f �c
i dimensionless generalized force corresponding to concentrated force Fc

f �d
i dimensionless generalized force corresponding to distributed force Fd

Fc concentrated harmonic force
Fd distributed harmonic force
FCRP fully clamped rectangular plate, or fully clamped rectangular plates, depending

on the context
FEM finite element method
H thickness of the plate
HFEM hierarchical finite element method.
[M], [K], [B] mass matrix, linear rigidity matrix and non-linear rigidity matrix respectively
MFB modal function basis
NLSSPFR non-linear steady state periodic forced response
qi generalized co-ordinate qiðtÞ ¼ ai sin ðotÞ
S, S* dimensional and non-dimensional surfaces [0,a] � [0,b] and [0,1] � [0,1],

respectively
T kinetic energy
U and V in-plane displacements in the x and y directions, respectively,
Vb, Va and V bending, axial and total strain energy, respectively
W ðx; y; tÞ transverse displacement at point (x,y) on the plate
wij(x,y) basic function obtained as product of the ith clamped–clamped beam function

in the x direction with the jth clamped–clamped beam function in the y

direction
W �

o�lðx�; y�; tÞ linear frequency response
W �

o�nlðx�; y�; tÞ non-linear frequency response
(x,y) point co-ordinates

%x indicates parameters expressed in the MFB
* the star exponent indicates non-dimensional parameters

Greek Letters
a the plate aspect ratio a=b/a
er basic function contribution

%er modal function contribution
n the Poisson ratio
r Mass density per unit volume of the plate
f�

i ith linear mode shape
t Non-dimensional time parameter defined by t ¼ ot
o Non-linear frequency
oL Linear frequency
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