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Abstract

In Parts I and II of this series of papers, a practical simple “multi-mode theory”, based on the
linearization of the non-linear algebraic equations, written on the modal basis, in the neighbourhood of
each resonance, has been developed for beams and fully clamped rectangular plates.' Simple explicit
formulae have been derived, which allowed, via the so-called first formulation, direct calculation of the
basic function contributions to the first three non-linear mode shapes of clamped—clamped and clamped—
simply supported beams, and the two first non-linear mode shapes of FCRP. Also, in Part I of this series of
papers, this approach has been successively extended, in order to determine the amplitude-dependent
deflection shapes associated with the non-linear steady state periodic forced response” of clamped—clamped
beams, excited by a concentrated or a distributed harmonic force in the neighbourhood of the first
resonance.

This new approach has been applied in the present work to obtain the NLSSPFR formulation for FCRP,
SSRP, and CCCSSRP, leading in each case to a non-linear system of coupled differential equations, which
may be considered as a multi-dimensional form of the well-known Duffing equation. The single-mode
assumption, and the harmonic balance method, have been used for both harmonic concentrated and
distributed excitation forces, leading to one-dimensional non-linear frequency response functions of the
plates considered. Comparisons have been made between the curves based on these functions, and the

*Corresponding author.

'In the remainder of this paper, both “fully clamped rectangular plates” and “fully clamped rectangular plate” will
be denoted as FCRP, depending on the context, as in Ref. [10]. Simply supported rectangular plates will be denoted as
SSRP, and clamped—clamped—clamped simply supported rectangular plates as CCCSSRP.

2Non-linear steady state periodic forced response is denoted in what follows as NLSSPFR.
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results available in the literature, showing a reasonable agreement, for finite but relatively small vibration
amplitudes. A more accurate estimation of the FCRP non-linear frequency response functions has been
obtained by the extension of the improved version of the semi-analytical model developed in Part I for the
NLSSPFR of beams, to the case of FCRP, leading to explicit analytical expressions for the “multi-
dimensional non-linear frequency response function”, depending on the forcing level, and the amplitude of
the response induced in the range considered for the excitation frequency.

© 2002 Published by Elsevier Science Ltd.

1. Introduction

The problem of plates vibration is of a continuing interest, due to their frequent use as
structural components, especially in aerospace [1]. The geometrically non-linear behaviour of
plates is encountered in many recent applications, in which aircraft panels are subjected to high
excitation levels, due to the engine jet, or to the atmospheric turbulence, which may exceed
120dB. In such situations, linear theories fail in predicting deflections, strains, stresses and
frequencies [2]. The prediction of service fatigue life is based on r.m.s stress/strain, and
predominant response frequency, in conjunction with the stress versus cycles to failure (S—N)
data. Current analytical design methods for sonic fatigue prevention are based essentially on
linear theory. The use of linear analyses, as mentioned in the above reference, would lead to poor
estimation of panel fatigue life. Therefore, it is of crucial interest to develop practical non-linear
approaches, allowing the effect of the geometrical non-linearity, due to large displacement
amplitudes, to be taken into account in the design process.

In a previous series of papers [3-8], a semi-analytical model has been developed for non-linear
free vibrations of thin structures such as beams, plates, and shells. The non-linear vibration
problem was reduced to the iterative solution of a set of non-linear algebraic equations, which
allows the amplitude-dependent non-linear frequencies and mode shapes of the structure
considered to be determined. More recently, this model has been extended to the NLSSPFR of
beams [9,10]. The main feature of this approach is that it makes the geometrically non-linear
effects appear not only via the amplitude frequency dependence, which was the main concern of
most of the previous studies, but also via the dependence of the structure deflection shapes on the
amplitude of vibration [3-13]. This allows quantitative estimates of curvatures to be obtained,
with the associated non-linear stresses, in sensible regions of the structure, which may be of crucial
importance in the fatigue life prediction of structures working in a severe environment. The
problem of non-linear forced vibrations of rectangular plates has not been yet examined using the
semi-analytical approach described above, neither in its general formulation which was applied to
beams in Refs. [9,10], nor in its improved simplified form which was applied to the NLSSPFR of
beams in Ref. [11], and to the free response of FCRP in Ref. [12]. The purpose of the present
paper is the extension of the models developed previously, to some rectangular plate cases which
are excited by concentrated, or distributed harmonic forces, in order to derive the corresponding
multi-dimensional Duffing equation. The procedure for solution of the multi-mode model is then
discussed, and two degrees of approximations are proposed. The first approximation is based on
the single-mode approach, which takes into account the contribution of the first mode, in the
modal functions basis defined in Ref. [12], and denoted as the MFB, and neglects the other modal
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function contributions. However, as the single-mode approach does not lead to any information
concerning the deflection shapes amplitude dependence, which is of crucial importance for
determining the associated non-linear curvatures, and non-linear stress patterns, an improved
simplified approach, similar to that applied to beams in Ref. [11], is developed in order to obtain
an explicit direct solution of the multi-mode model, for the NLSSPFR of FCRP, which is
expected to be very useful in further analytical developments, and also for engineering purposes.
This assumes, in the light of the numerical results previously obtained for FCRP in Ref. [12], that
the higher modal function contributions are not equal to zero, as in the single-mode approach, but
are small compared to the first modal function contribution. Then, by neglecting first and second
order terms in the system of non-linear algebraic equations, an explicit analytical solution is
obtained for the higher modal function contributions to the NLSSPFR of the rectangular plate
considered.

In the Section 2, a brief review of the general theory mentioned above is first presented for the
case of free vibrations, in order to introduce the notation and the basic concepts. Then, the model
is generalized in Section 3 to the NLSSPFR of FCRP. In Section 4, the solution of the multi-
dimensional Duffing equation, based on the harmonic balance method and the single-mode
approach, is given for various plate aspect ratios, various type of harmonic excitation, i.e.,
concentrated or distributed, and various levels of excitation. Also, a simplified theory for the
solution of the multi-mode model is presented, leading to analytical expressions for the higher
modal function contributions. The numerical results obtained, based on the two simplified
approaches mentioned above are then compared with previously published results, obtained by
other methods, such as the FEM, the HFEM, and the ANM.

2. A brief review of the theoretical formulation, based on Lagrange’s equations, for the geometrically
non-linear free response of FCRP

2.1. Introduction

The theoretical model based on Hamilton’s principle and spectral analysis, successfully used in
previous works to determine the non-linear mode shapes of beams, plates and shells [3-8], is used
here in order to determine the NLSSPFR of FCRP excited by concentrated or distributed
harmonic forces. As an introduction to Section 3, in which the model for the forced case is
presented, this section starts by giving a brief review of the theory developed in Refs [3—5] for the
free vibration case, in order to make it easy to the reader to understand the notation and the
analytical developments presented in the remainder of the paper. Also, the non-linear frequency
dependence on the amplitude of vibration, obtained via an exact elliptical solution of the non-
linear algebraic system, considered in the case of a single-mode approach, is given for some plate
cases and compared with other approximate solutions, previously published.

2.2. General model for non-linear free vibration of FCRP

Consider transverse vibrations of the plate shown in Fig. 1, having the characteristics given in
Appendix D. For such a plate, the strain energy V is given as the sum of the strain energy due to
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Fig. 1. Plate notation.

the bending V7, and the membrane strain energy induced by large deflections V,. In Ref. [5,7], the
expressions used for V5, V,, and the kinetic energy 7 have been extensively discussed on the basis
of a systematic comparison of the results obtained previously both experimentally and
theoretically, based on various approaches. The approximate expressions adopted were

] 2w EwW\?
v,=- | D[22+ 4s ]
: 2/5 (axz+ay2> , (1)
2
1% ——3D/ w 2+ LAY ds )
“2H? Jo\ \ ox oy ’
oW\ ?
T =lpH / <—> ds (3)
o\ or

in which W is the transverse deflection function, and S the plate area. The expression for V/, is the
plate simplified bending strain energy expression, valid for the fully clamped boundaries
considered in Section 5.2 [14]. For the other boundaries cases, the general expression is given in
Appendix A. In all of the above expressions, terms involving the in-plane displacements U and V'
and their partial derivatives have been omitted, as in Refs. [5,7]. In addition to the discussions
given in the above references for justifying such an assumption, the agreement found in the
present paper between the results obtained in the non-linear forced case, and those based on other
approaches, which are discussed in Section 4.4.2 confirms the validity of such an assumption for
reasonable ranges of vibration amplitudes. Assuming that the transverse displacement of a point
(x,p) of the plate mid-plane can be written as

W(x,p, 1) = q()wi(x, ) 4)
in which the repeated index k is summed over the range {1, ..., n}, n being the number of basic
functions wy used. Substituting W in expressions (1)—(3) for V,, V,, T and rearranging leads to

Vi = 3qiq;ki, (5)
Va = 34iqi9c4qibiji, (6)

T = 3qiqm; (7
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in which my;, k; and b, are the general terms of the mass tensor, the rigidity tensor, and the non-
linear rigidity tensor defined in Refs. [3,5], and reproduced here in Appendix A. The indices i, j, k
and / are summed over 1, ..., n.

The dynamic behaviour of the structure may be obtained by Lagrange’s equations for a
conservative system, which leads after calculation to

Gimir + qikir + 2qiqjqibir = 0, 1 =1,...,n. 8)

Using matrix notation, and the non-dimensional parameters defined in Ref. [5], and given in
Appendix A, system (8) can be written as

M |{q..} + [K']{a} +2[B"({q})] {q} = {0} 9)

in which {q,.} denotes the second derivative of the column vector of generalized co-ordinates
{q} = [¢1¢>...q,] with respect to the non-dimensional time parameter T = wz. If harmonic motion
is assumed, as in Refs. [5,7], one can write

qi(t) = a sin ot and  W(x,y,t) = w(x,y) sin wt = Haka(x*,y*)sin wt. (10)
Substituting Eq. (10) into Eq. (9) and applying the harmonic balance method leads to
([K'] — 0™ [M]){A} +3[B (A)]{A} = {0} (11)

in which {A} is the column vector of basic function contribution coefficients {A}" =[a;a>...ay,).
Using the tensor notation, the above system may be written as

—w*zaim; + aik; + %aiajakb;kr =0, r=1-n. (12)
The formulation was completed in Refs. [5,7] by replacing o2 by its expression obtained from the
principle of conservation of energy, i.e.,

* *
W — aiajkij + aiajakalbiik,

¥ (13)

a,-ajml.j
Using a procedure similar to that adopted in many previous works [4,5,7,8,15-18], the
contribution of the predominant basic function participating in the non-linear mode shape
considered was fixed, and the other basic function contributions were calculated via numerical
solution of the remaining (n-1) non-linear algebraic equations.

2.3. Simplified multi-mode approaches for solution of the multi-mode model for geometrically non-
linear free vibrations of FCRP

The purpose of this subsection is to give a brief review of the first formulation presented in
Part II of this series of papers [12], for free vibration analysis of FCRP.

Consider large vibration amplitudes of a FCRP, having an aspect ratio & =b/a less than 1, in the
neighbourhood of its first resonant frequency. Following the choice of basic functions adopted in
Ref. [5], the plate deflections in the x and y directions are represented by clamped-clamped beam
functions. So, the simple index k of the contribution @, used in the series expansion (10) for the
plate deflection function W}: may be replaced by a double index a;;, which means that the plate
function WZ is the product of the ith and jth clamped—clamped beam functions in the x and y
directions, respectively. To determine the first non-linear mode shape of FCRP, the linear rigidity



6 M. El Kadiri, R. Benamar | Journal of Sound and Vibration 264 (2003) 1-35

tensor k: and non-linear geometrical rigidity tensor b;'kl have been calculated using the first nine
symmetric-symmetric plate basic functions, obtained as products of the first three symmetric
clamped—clamped beam mode shapes , in the x and y directions.

The first formulation is based on an approximation which assumes that the contribution vector
{A} =[ay...a,] can be written as [alsz...sn], with ¢; small compared to a;, for i=2—n. Then,
considering the expression aa]akbykr of Eq. (12) which involves summation for the repeated
indices 7, j , k over the range {1,2,...,n}, both first and second order terms with respect to g;, i.c.,
terms of the type a?eby,,,, or of the type alsjskbljkr, are neglected. Therefore, the only remaining
term is ajby,;,-

If k", for i#r, is assumed to be negligible compared to k.., with the objective of obtaining a
direct solution, system (12) permits the basic function contributions &, &s,.., & of the second and
higher functions to be obtained explicitly, corresponding to a given value of the assigned first
basic function contribution «;, as follows

3 3%
3aibyyy,

EEEPKIE
krr —wm,

& = — r=23,..,9). (14)
In Part II of this series of papers [12], it was shown that since the BFB does not lead to a diagonal
rigidity matrix, application of the above formulation in this basis leads to poor results, and
consequently, the problem has been reconsidered in the modal function basis, denoted as MFB.

To reformulate the problem in MFB, the expansion of the transverse displacement function
w (x . *) in the form of the finite series: w'(x", y") = akwk(x ,"), given in Eq. (10), is rewritten as
wi(x", ") = akgbk(x ,"). In the two above expressions, a summation is performed for the index k
over the range {l,...,n}. d)k(x ,»") is the kth symmetric-symmetric FCRP linear mode shape.
These SSFCRP linear mode shapes were obtained by numerical solution of a linear eigenvalue
problem, similar to that defined by Eq. (34) of Ref. [12]. In the MFB, the non-linear algebraic
system (12) has been rewritten as

*2 =

) aém +a5k + aauah. =0, r=1-n (15)

suvr

in which k;,, /i, and b, are the FCRP modal parameters calculated in the MFB. The analytical

Sr2 suvr
expressions, and numerical values of these parameters for FCRP with «=0.6, and « =1, are given
in Appendix A, with the eigenvalues and eigenvectors obtained from the linear solution.
Assuming in the MFB a contribution vector {/_I}T: {a18...8,}, and applying an analysis similar
to that made above in the BFB, leads to
— %C_l?b?lll (}"
r E* . 60*27’7_’1*

rr

=2,3,..,9). (16)

These simple expressions have led, in the case of FCRP with an aspect ratio «=0.6, to accurate
values for the basic function contributions, compared with the iterative numerical solution of the
non-linear algebraic system, for maximum plate vibration amplitudes, reached at the plate centre
(x*,y*) = (0.5,0.5), up to about 0.6 times the plate thickness, for the first non-linear FCRP mode
shape. It was shown in Ref. [12] that, for amplitudes of vibration up to once the plate thickness,
the error induced by this first formulation does not exceed 0.066% for the non-linear frequency,
and 5.62% for the associated non-linear bending stress obtained at point (0.25,0), chosen in the
region in which the maximum value of ¢ y» 18 Teached.
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2.4. Exact solution, based on use of elliptic functions, for solution of the one-dimensional Duffing
equation, obtained by application of the single-mode approach to the multi-mode model for non-linear
free vibrations of FCRP

2.4.1. Introduction

In this subsection, non-linear free vibration of rectangular plates with various boundary
conditions is considered. The amplitude dependence of the non-linear frequency obtained via
exact elliptical solution of Eq. (11), based on the single-mode approach, is compared with other
previously published, approximate solutions. It should be noted that such an exact analytical
solution of the Duffing equation is known and has been mentioned for example in Ref. [9] (and in
Refs. [9,29] of Ref. [9]). The purpose of the present subsection is determination of the specific
solutions for FCRP, with the corresponding numerical values of the equation parameters, and use
of the power expansion of the exact solution obtained in order to determine acceptable
approximate expressions for non-linear frequencies, valid for a large interval of vibrations
amplitudes, exceeding the radius of convergence of the analytical series, based on the Pad¢
approximants. It should also be noted here that another exact solution of the non-linear equation
of motion, expressed in a manner that can be evaluated numerically to any desired degree of
accuracy, has also been presented in Ref. [19], based on a procedure which eliminates the
singularities in the expression of the non-linear frequency and yields a form which can be
integrated numerically.

2.4.2. Exact solution based on use of elliptic functions
Applying the one mode assumption to Eq. (9) leads to

2
* ()]
P (w—L> (1 + B’ =0, (17

where 8 = 2b;,,,/k|,- The exact mathematical solution of Eq. (17) can be given in terms of the
Jacobean elliptic function C, [9]. The assumption that the solution ¢,(7) is periodic with a period
of 27 gives the final form of this solution:

(]1(1') = day Cn(VT,k)a (18)
7'C2 b3
oy ()0 e .
(w_L> G (9
n/2 do
K(k) = _— 20
) /o 1 — k2sin’6 20
2 ﬁa%
=@ 2pady @

y = (%),/1 + Ba? (22)
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in which k is the modulus of the elliptic function and y may be taken as the “circular frequency”.
Using a perturbation method, as in Ref. [9], for small values of a;, the modulus k is also small,
C,(y1,k) can be approximated by sin w¢.

Expanding the elliptic function K(k) as a power series of a;, Eq. (20) leads to

2
(6)]
(wT) = 1 +3pat — Zp7al + 0@a). (23)

Finally, the first approximation of the exact solution, obtained by truncating the above series at
the second order, is given by

q1(?) = a; sin wt, (24a)
W 2
(&) =1+ (24b)

The results obtained by the exact solution, and by the first approximation of the exact solution at
the second order, will be compared in Section 2.4.3 with those obtained by use of two Padé
approximants.

2.4.3. Improvement of the solution, based on use of the Padé approximants

An extensive discussion has been made in Ref. [9] concerning the limitation in the choice of the
polynomial approximation used in the power series expansion of the exact solution (20), given in
Eq. (23), because of the divergence of the solution obtained outside the zone of convergence. It
was demonstrated that increasing the order of the series does not increase the validity of the
solution because of the divergence beyond the radius of convergence. It appeared also in this
study that the second order approximated solution (24b) is the best one because it remains very
close to the exact solution over a large range of vibration amplitudes. It has been also shown that
use of the Padé approximant denoted as P[M,N], which is defined as the quotient of two
polynomials of degree M and N respectively, increases the range of validity of different
approximation methods based on the perturbation method. A criterion which has worked well
here is the choice of P[M,N] such that M—N=2. So, two approximants have been used here,
giving a good accuracy from comparison with the exact solution at large vibration amplitudes:

2 2 2 4
o\ 1 (128 +192Baj + 69 a]
() = P2t = 55 (2 T , @5)

4

2 2 2 4 3.6
o 1 {4096 + 9216fa3 4 6748%at + 16054 a
( >=P[6,4](a1): ( hay Fa b ‘). (26)

1024 + 1536a3 + 5594%at

These relationships have been established in Ref. [9] for the beam case, but can also be used in the
FCRP case at large vibrations amplitudes, since the latter case is also governed by the same
equation, in which the value of the parameter § = 2b;,,,/k;, has to be calculated according to the
theory developed for plates in the previous sections.

It can be seen in Table 1, that for non-dimensional amplitudes of vibrations up to w, = 2.5,
corresponding to a; =1, the solutions obtained by the three approximations, i.e., Egs. (24b), (25)
and (26), are very close to those obtained by the exact solution. The differences between the exact
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Table 1
Comparison of the frequency ratio w/w; obtained by the exact elliptic solution with the improved approximate
solutions obtained by using the Padé approximants for FCRP

a ex-sol P4,2) P(6,4) order 2
Eq. (19) Eq. (25) Eq. (26) Eq. (24b)

0.200 1.06162341 1.06162352 1.06162341 1.06190703
0.300 1.13337139 1.13337313 1.13337139 1.13455045
0.400 1.22612026 1.22613022 1.22612029 1.22905906
0.500 1.33527261 1.33530509 1.33527280 1.34081725
0.600 1.45705459 1.45712992 1.45705521 1.46588502
0.700 1.58854813 1.58868850 1.58854965 1.60114651
0.800 1.72755253 1.72777837 1.72755551 1.74423183
0.900 1.87241967 1.87274782 1.87242468 1.89336803
1.000 2.02191259 2.02235594 2.02192017 2.04723315

solution and the approximations do not exceed 0.022% for P(4,2), 0.00037% for P(6,4), and
1.25% for the order 2.

3. Theoretical formulation for the geometrically NLSSPFR problem of FCRP excited harmonically
by concentrated or distributed forces

3.1. Introduction

The purpose of Section 3 is the extension of the model presented above for non-linear free
vibrations of FCRP, to the case of geometrically NLSSPFR of FCRP, excited harmonically by
concentrated or distributed forces. Then, various degrees of approximation will be examined for
the solution of the general model obtained, as discussed in Section 4.

3.2. Formulation of the problem of the NLSSPFR of FCRP in the BFB

Consider a FCRP excited by a concentrated harmonic force F* applied at the point (xo, o), or
by a distributed harmonic uniform force F”, distributed over the range S (S is the surface of the
plate or a part of it ). F* and F* may be written using the Dirac function J as

Fé(x,y,t) = F0(x — x0)o(y — yo)sin wt, (27)
Fé(x,p,1) = F¥ sin ot if (x,y)€eS, (28a)
Flx,p,0)=0 if (x,p)¢S. (28b)
The corresponding generalized forces Ff(7) and E.d (¢) in the BFB are given by
F{(t) = Fwi(x0, y0) sin wt = f sin wt, (29a)

Fi(t) = F? sin wt / wi(x,y)dxdy = £ sin wt. (29b)
S
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The dimensionless generalized forces f; ¢ *¢ and /i *d corresponding, respectively, to the concentrated
force F© at point (xo,)y), or its non-dimensional equivalent (xo, yo) and to the uniformly distributed
force F? over the surface S, or its non-dimensional equivalent S*, for a FCRP having the
characteristics a, b, H and D, have been calculated in Appendix A. The expressions obtained are

.. DF¢
fic_ aDH l( ()5 0) (30)
41d

1o bF//w(x,y)dxdy 31)

A forcing vector {F'(#)} is defined by: {F;()} = {f;} sinwt, or {F; (z)} = {f;*}sin o,
depending on the type of excitation considered. Adding the forcing term {F (t)} to the right
hand side of Eq. (9) written in the BFB leads to

M {q..} + [K']{a} +2[B"({a})] ta} = {F (1} (32)

This equation appears as a generalization to the non-linear case of the classical forced response
matrix equation, well known in linear modal analysis theory [20] as

IM'1{q..} + [K'l{q} = {F (1)} (33)

to which the correcting term 2 [B*({q})] {q}, corresponding to the non-linear geometrical rigidity is
added. If harmonic excitation is assumed, as in Egs. (29a) and (29b), the linear system (33) leads
to a harmonic solution, which may be expressed analytically in the MFB, in which the system is
uncoupled. The response is obtained as a superposition of modal contributions, whose
expressions are given in Section 4. In the non-linear case, previous experimental and theoretical
works have shown that a harmonic distortion of the response occurs at large vibration
amplitudes, which is accentuated in the clamps region, even when the excitation is harmonic.
Since it was shown, via experimental measurements and a careful separation of harmonics, that
the harmonic distortion was spatially distributed, the non-linear response may be written as [3]

= {A}T{W} sin kot, (34)
k k

where {A;}T= [a as...a, ] is the matrix of coefficients corresponding to the kth harmonic, {W} =
[wiws....... wy] is the ba51c spatial functions matrix, k£ is the number of harmonics taken into
account, and the usual summation convention on the repeated index k is used . Examination of
this effect would have exceeded the scope of the present work, which is restricted to the first
harmonic distribution amplitude dependence, so that the response is written as

W(x,y) = a;wi(x,y) sin wt. (35)
The time-dependent contribution vector {q}'= [¢14>...¢,] can therefore be replaced in Eq. (32) by
{q} = {A} sin wr, with {A}T=[aq1a>...a,] representing the time-independent basic function
contributions vector. This leads to
([K'] — 0*[M7]){A} sin® ot + 2[B*(A)]{A} sin® wr = {f;} sin wr (36)
in which {f;} equals {f;°} or {f;“}, depending on the type of excitation under examination.
Applying the harmonic balance method to Eq. (36) leads to

(K] - o M)A} +3[B ()] A} = {17}, (7)
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This equation appears as a generalization to the non-linear case of the classical eigenvalue
problem, well known in linear modal analysis theory, i.e.,

(K] - o?[M]){A} = {f]} (38)

to which the geometrically non-linear rigidity term 3 [ (A)] {A} has been added. Eq. (37) can be
written using the tensor notation as

*

aik, — o 2am;, + 3a; ajakbl]kr =f 1=1.n (39)

The last non-linear algebraic system, corresponding to the NLSSPFR of FCRP, is similar to that
obtained for the free vibration case, i.e., Eq. (12), with three differences. (1) In the free case, i
varies from 2 to n, and the first equation is omitted, because the first contribution a; was assigned,
as explained in the discussion following Eq. (13). (2) All of the n equations have a right-hand side
representing the generalised forcing term fl* (3) The frequency parameter »~ does not represent,
as in Eq. (12), the non-linear resonant frequency associated with a given amplitude of vibration,
but represents the excitation frequency, which varies in the range chosen for performing the
excitation tests, or for examining theoretically the NLSSPFR. Also, it may be worth noting
here, that system (39) is formally identical to that obtained in Ref. [9], and used to obtain the
NLSSPFR of various beams [9,10].

3.3. Formulation in the MFB

As stated in the above section, the explicit analytical solution of the linear system (33) can be
obtained only if the problem is uncoupled via use of the normal modes basis of the FCRP
considered, i.e., the MFB. Also, it was shown in Ref. [12] that the accurate explicit analytical
solution corresponding to the non-linear free vibration case of FCRP can be obtained only in the
MFB. So, the NLSSPFR problem will also be formulated here in this appropriate basis, using the
notation of Ref. [12]. Consider now the NLSSPFR problem of FCRP, formulated in the BFB by
the non-linear system (32). In the MFB, the generalized forces F%(¢) and FY(¢) are given by

F(t) = FC¢, (x0,y0) sin wt = f€ sin wt, (40a)

F(#) = F sin ot / d,(x,y)dxdy = f¢ sin wt (40b)
S

in which the ¢,’s are the elements of the MFB, defined in Ref. [12]. The dimensionless generalized
forces f and f corresponding to a concentrated harmonic force F°, applied at (xo, yo) and a
distributed harmonic force F, uniformly applied over the surface S, for a FCRP having the
characteristics a, b, H and D are given by

3 e
= ) 1)

£ = b4Fd// d;(x",y")dx"dy". (42)
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Rewriting Eq. (32) in the MFB gives
[ {a.) + [K | @ + 2B cap) @ = {Fo} 43)

in which [M ] and [K ] are the diagonal mass and rigidity matrices calculated in the MFB, and [B']
is the non-linear rigidity tensor, calculated also in the MFB. Eq. (43) appears as a generalization
to the non-linear case of the classical linear forced response problem, well known in modal
analysis theory [20], i.e.,

M| {a.} + [K | @ = {F o} (44)
to which the correcting term 2[B ({q })]{(‘1*}, corresponding to the non-linear geometrical
rigidity, is added. Assuming, as in the previous section, that harmonic motion takes place, leads to

gi(t) = a; sin wt (45)

for i=1-n. Substituting Eq. (45) into Eq. (43), and applying the harmonic balance method, gives

(K] o (3]} 8) + s - {7}

This equation is the extension to the non-linear case of the classical linear eigenvalue problem,
obtained in linear modal analysis theory [20], i.e.,

(K] -] a) = {7} “)
to which the correcting term 5 [ (A)] {A}, corresponding to the non-linear geometrlcal r1g1d1ty is

added. The linear response obtalned from solution of Eq. (47) is given by a function W (x5 5,0
obtained as a superposition of modal contributions:

f_*
(ki — @™my) ™

The linear frequency response function (48) can be rewritten using the notation corresponding to
the MFB, and the repeated indices summation convention as

Wo(x',y") = a; (x",y") sin o (49)

Wo-(x"y' 0= sinowty_ aip;(x",y") = Z ~, (x",»") sin wt. (48)

Returning now to the main purpose, i.e., the NLSSPFR of FCRP, system (46) may be written
using the tensor notation as

w*? e =S T=1-1 (50)
which is a system of n coupled non-linear algebraic equations, whose solution should lead to a
multi-dimensional non-linear frequency response function, describing the behaviour of FCRP
subjected to high levels of harmonic excitation, so that the deflection shapes become amplitude
dependent, and exhibit in the neighbourhood of each resonant frequency multi-valued regions in
which the jump phenomenon may occur.

asm —i—ask —i—zasauabb
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4. Solutions of the coupled non-linear differential equations for the NLSSPFR of FCRP
4.1. Discussion of the solutions procedures

Before presenting in the next subsections the methods of solution proposed in the present paper
for the multi-dimensional Duffing equation (43) describing the NLSSPFR of FCRP, a discussion
of many aspects of the various solution procedures which may be adopted for such a coupled non-
linear problem is made here.

The modelling of very complicated problems, such as geometrically non-linear vibrations of
FCRP considered here, for which no exact solution is known, even in the linear case, involves
many choices based on the following observations:

(a) Due to the complexity of the real non-linear dynamic behaviour, and the variety of the
phenomena involved (harmonic distortion, internal resonance, bifurcation points, non-linear
coupling between modes, multiplicity of solutions, effect of damping, etc.), it is very difficult
to develop a reasonable model including all of the known effects. So, a given model
necessarily should be directed towards predicting specific effects, and hence, should be based
on a decision to include or not each of the known physical aspects of the non-linear dynamic
behaviour of the structure considered. Although this automatically limits the domain of
validity of the model, it seems normal to do so in the modelling of very complex problems,
because, as outlined in Ref. [21], each particular approach can only highlight one or a few
facets of the problem, and is valid under specific conditions. Of course, it is always good to
attempt and include the maximum number of effects in a unified model, when it is possible to
do so, but this should not make the formulation too complex, and understandable only by a
small number of experts. Also, the computing time should not become too costly, as discussed
below.

(b) One may be tempted to increase the numerical accuracy of the solution obtained, via an
increase in the number of degrees of freedom of the system, an increase in the complexity of
the formulation, and in the computing time. However, this does not seem to be always
justified, since the various assumptions involved in the theoretical formulation, and the
various approximations used in the solution process automatically limit the expected accuracy
of the solutions. In such conditions, attempting too exact a numerical solution, i.e., solutions
involving a large number of decimals, may be meaningless, and also often useless.

(c) A choice could be made between sacrificing, to a reasonable extent, the numerical accuracy of
the solution, and hence reducing its domain of validity, but focusing on the elegance and
simplicity of the description, or the rapidity of the solution. This strategy may be realistic in
many cases, in view of the applications made of the model, and is, to a great extent, justified
by the insight it gives into a given aspect of the physical behaviour, which is important from
the conceptual point of view. Also, it generally induces great economy and facility in the
solution process. In a paper entitled “Insight, not numbers” [22], it is stated that “The beauty
and elegance of a modal representation is that it describes the dynamic properties of a
structure in terms of simple oscillators and geometrically intuitive deformation patterns, and
that only a limited number of modes are necessary to specify the dynamic behaviour in any
given frequency band”.



14 M. El Kadiri, R. Benamar | Journal of Sound and Vibration 264 (2003) 1-35

Due to the above remarks, many strategies for solving the non-linear system (32) will be
considered below, responding to various choices among the points (a)—(c) presented above. Three
approximate methods of solution of the non-linear algebraic system are proposed and compared
with previous results. The first, based on the single-mode approach, assumes a significant
contribution a; of the first mode, and neglects completely the contributions &, of the higher
modes, for r=2—n. The second and third assume that the higher mode contributions are not
equal to 0, but are small compared to the first contribution. This leads to explicit analytical
expressions for the NLSSPFR of FCRP, or to numerical results obtained via solution of reduced
linear systems of eight equations and eight unknowns, for each value of the level and the
frequency of the excitation. The advantages and disadvantages of each of the above methods have
been discussed in the general introduction of this paper. A numerical solution of the non-linear
system (32), based on an iterative procedure, for various FCRP aspect ratios will be presented
later.

4.2. Solutions based on the single-mode approach

4.2.1. Introduction

The single-mode assumption neglects all co-ordinates except a single “‘resonant’ co-ordinate.
Thus, it reduces the multi-degree-of-freedom system to a single-degree-of-freedom system. It has
been shown in previous studies that such an assumption may not be very rigorous, with regard to
some effects in non-linear vibration of structures, such as the increase of curvature near the
clamps of a C—C beam [4], or the non-linear increase in curvatures and stresses in the clamps
regions of FCRP, both homogeneous and composite [15-17]. However, the single mode approach
has been very often used in the literature [23-29]. This is due to the great simplification it
introduces in the theory on one hand, and on the other hand because the error it introduces in the
estimation of the non-linear frequency remains very small for a large range of vibration
amplitudes, as has been shown for example in Ref. [12].

4.2.2. Formulations in the BFB and the MFB

In this section, in which the single-mode approach is applied in the BFB, the NLSSPFR of the
FCRP excited harmonically is assumed to involve only the first basic function wy,. The excitation
frequency is chosen in the neighbourhood of the first resonant frequency. So, Eq. (32) reduces to

mquLnJrleql +2btmq? :fl*sina)t (51)

in which mj,, ki, and bj,;, are the mass, rigidity, and non-linearity terms corresponding to the
first basic function, respectively, and f; is the corresponding generalized force . Assuming a
harmonic response ¢; = a;sinwt, and applying the harmonic balance method leads to

(le - C‘)*zmil)al + %ﬁnﬂ? :fl*‘ (52)

Introducing in Eq. (52) the linear frequency parameter w,*> = kj,/m}, and rearranging leads to

w\ 2 2 %

w * a 1 f
s =1+3b —,}—(*>¢. 53
(wL> 2 llllkn kll a ( )
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This equation is similar to Eq. (32) obtained in Ref. [9] for the beam case. Results based on
Eq. (53) are given in Section 4.4.2 for various FCRP aspects ratios and excitation levels, and
compared with previously published data.

In order to improve the accuracy of the approximation based on the single-mode approach, as
in the FCRP free vibration case, the single-mode approach can also be considered in the MFB,
which reduces Eq. (43) to

iy Qe + Ky @y + 267,35 = £ sin ot (54)

in which my,, ki, and b}, are the mass, rigidity, and non-linearity terms corresponding to the
FCRP first linear mode shape, respectively, and fl is the corresponding generalized force.
Assuming a harmonic response §; = @; sin wt and applying the harmonic balance method leads,
in a manner similar to that developed in the above paragraph, to

w2\ 2 _2
w 1
oy 1 11/ 4

This equation is formally identical to Eq. (53), in which the parameters calculated in the BFB are
replaced by those calculated in the MFB. Numerical results based on Eq. (53) and (55) are
discussed in Section 4.4.2.

4.3. Simplified theory for solution of the multi-mode model corresponding to the NLSSPFR of
FCRP

In the above section, solutions of the multi-mode model (39) and (50), based on the single-mode
approach, have been presented and compared with other results available in the literature.
Although it was shown that such an approach, in addition to the advantage of its great simplicity,
may lead to good results for reasonable ranges of excitation levels and vibration amplitudes, it
cannot be applied to high excitation levels, for which the contributions of the higher basic
functions to the response become very important.

The improved version of the semi-analytical model applied in Ref. [11] to the non-linear forced
response of beams, has been extended in the present work to the case of FCRP. It made it possible
to obtain analytically a more accurate estimation of the FCRP non-linear frequency response
functions, via concentrated or distributed harmonic excitation forces. These functions involve
the contributions of the higher basic functions and make it possible to take into account the
amplitude dependence of the deflection shapes induced by the geometrical non-linearity.

This approach assumes that the higher mode contributions (to the NLSSPFR of FCRP) are
small compared to the first basic function contribution but are not completely negligible as in the
single-mode approach. This leads to the following analysis

Consider the non-linear system (50) and apply the first formulation. It consists of neglecting in
the expression @a,a,b.,,, of Eq. (50), which involves summation for the repeated indices s, u, v
over the range {1, 2, ...,n}, both first and second order terms with respect to &;, i.e. terms of the
type a Pbbm, or of the type @,8,8,b;,,,- The only remaining term in the expression @a,a,b,,,, of
Eq. (50) is @ blllr Eq. (50) becomes

(k;, — w™m,)a, +3aib,,, =f" for (r=2,..,n). (56)
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This system makes it possible one to obtain explicitly the modal contributions aj,...,da,
corresponding to a given value of the contribution a; as follows:

a :ff* —3aib,,

"k - o?m

The first harmonic component of the NLSSPFR function W:)*(x*, y*, 1) is then given by
w*(x ’y t)

(r=2,..,n). (57)

fl _fa%bllll Kook F f; %_% ;111 * /;9* %al 9111
= [—d) (x,y) —d)z( I

= e + = XLY) (x", )| sin .
(kn_wzmn)l (kyy — 22) (koo_w 99)9

(58)

Eq. (58) is an extension to the non-linear case of Eq. (48) obtained in linear modal analysis, in
which the FCRP total response W' (x*, ¥, 1) appears as the sum of the linear response
W:)*l(x*, y", 1) given by Eq. (48) and a non -linear term W nl(x ,¥', 1) given by

* * *
Ww*nl(x »y ’l)

b_* * * * b_* * * * b_*
= 3“? %%(x Y )+#¢2(3€ V)t +%¢9(3€ >,V ) sin wt.
(kll ™ 2my;) (kyy — ™ 21my,) (kg — ™19

(59)

The cubic non-linear term @ may be obtained for a given value of the excitation frequency
parameter w*, and a given value of the excitation force parameter f,", via Eq. (55) based on the
single-mode approach. It is interesting to notice here that Egs. (57) and (58) are formally identical
to Egs. (64) and (65) obtained for the NLSSPFR of various beams in Ref. [11].

The simplified theory presented in this subsection focuses on non-linear vibrations of plates
using a multi-mode approach and taking into account the coupling between the higher vibration
modes. The solution obtained in Eq. (59) makes it possible to get directly the non-linear frequency
response function in the neighbourhood of the first mode. This gives not only the displacement at
the centre of the plate, as is usually the case, as a function of the non-linear frequency, but also the
plate response spatial distribution on its whole area, for each level of excitation. The deformed
deflection shapes, obtained by this approach, agree well with the experimental data carefully
measured in Ref. [13], and permit the associated non-linear stress distribution, which may be of a
crucial importance in the design process to be deduced easily.

4.4. Comparison of the solutions based on the single-mode approach, and the simplified multi-mode
approach, for the NLSSPFR of FCRP, with previous results obtained by others methods

4.4.1. Analytical details

In order to make comparisons of our results with those previously published , the different
choices of normalization have to be standardized as follows :

In Ref. [30], the deflection function W(x, y, f) was written in the form W(x,y,?) =
HAq(H)¢(x,y), where ¢(f) and ¢(x,y) are time and spatial functions, normalized in such a
manner that ¢pax=¢mer=1. According to these notations, the maximum vibration amplitude



M. El Kadiri, R. Benamar | Journal of Sound and Vibration 264 (2003) 1-35 17

Wiax = HA. In the present work, W, is given in the BFB by W,,,. = Halva(C), in which C
denotes the plate centre. So, the non-dimensional amplitude of vibration A, defined in Ref. [30], is
related to the parameters defined here by A = alw’f(C). Using this notation, Eq. (53) can be

written as
N % % %
<w*> =14+ §<bl>lkll> *AZ > — Wl(*c)fl (60)
wr 2\ kyy J(wi(©) ki, A
which leads to
N 2 * 2
<w*) —1 +3<b1111) A E (61)
oy Wi (C)* A
Using the expression for f;", obtained from Egs. (30) and (31), for i=1, leads to
Fl = A 1w((i)//w(x “)dx"d (62)
DH kn ) y >
. b3F‘ 1
' uDH k Wl(C)W1(xoaJ’0) (63)

corresponding to the cases of a distributed and a concentrated force, respectively. Similarly, in the
* . . .
MFB A = @,¢,(C), which leads, after substitution and rearrangement to

* 2 % 2 =
(Z) =1+ 3(b11“) AN (64
Wy (¢ (C) A
where F is defined in the case of a distributed and a concentrated force, respectively, by
., bPF 1
d _
F DHk¢<C)//¢<x,y)dxdy, (65)
_.  DbF
F =i T 01O (5335, (66)

As shown in Appendix B, the non-dimensional parameter Py = cFy/pH*w?* used in Refs. [30,31],
is related to the non-dimensional parameters defined here in the BFB and the MFB, respectively
by

/i

11

fl

WI(C) and Py = d)(C) (67,68)

The above expressions will be used for comparison purposes in the next section.

4.4.2. Comparison of numerical results

In order to make comparisons with previously published results, only the values of the
excitation forces found in the literature could be used. In Table 2 and Fig. 2, the values of the
forced vibration frequency ratio for FCRP subjected to a harmonic distributed force Po= 0.2 (F,
=873.82N/m?), obtained by (a) solving Eq.(61) corresponding to the single-mode model
expressed in the BFB (rigidity &, and non-linear rigidity b,,,), (b) solving Eq. (64) corresponding
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1.0

First formulation (9D) in the MFB
equation (58)

0.8 ==

-+ 1D in the MFB equation (64)

0.6 = 1D in the BFB equation (61)

max

0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0

= FEM x HFEM v ANM

Fig. 2. Comparison of the forced response of a FCRP (z=1) subjected to harmonic distributed force F,=0.2 obtained
with various present models. (a) Eq. (61), (b) Eq. 64, (c) Eq. (58), with previously published results, based on different
other models. (M) F.EM; (x) H. FEM.; () ANM

to the single-mode model in the MFB (rigidity k|, and non-linear rigidity 4},,,), (c) using the
simplified theory for solving the multi-mode model leading to Eq. (58), are compared with
previously published results [25,30-32]. It can be concluded from Table 2 and Fig. 2 that the
present results are very close to those based on other methods, for displacement amplitudes up to
about 0.6 times the plate thickness. For higher amplitudes, situated between 0.6 and once the plate
thickness, the results obtained from the multi-mode model are, as may be expected, closer to those
obtained by the others numerical methods than those based on the single-mode approach. The
average and standard deviation of all of the results available, obtained by various methods,
are listed in Table 3. In Tables 4a and b, the percentage errors between the averages obtained in
Table 3, and the values obtained by the single-mode approach, i.e., Eq. (64), and the simplified
multi-mode approach, i.e., Eq. (58), are listed. It can be noted that these errors do not exceed 5%
in all cases. For small amplitudes, i.e., amplitude less than 0.6 times the plate thickness, the errors
induced by the two methods are comparable. For relatively high amplitudes, the error induced by
the single-mode approach slightly exceeds that induced by the simplified multi-mode approach.

To evaluate the effect of the plate ratio aspect, the values of the forced vibration frequency ratio
w/wy of FCRP, with different aspect ratios, calculated from Eq. (61), are presented in Table 5. It
can be seen that these values are very close to each other for this excitation level, but a trend of
increase of the aspect ratio w/w; may be noted when the aspect ratio decreases.

Forced responses of a fully clamped square plate, subjected to different distributed harmonic
forces, are shown in Fig. 3. It can be seen from these curves that the single-mode model can be
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Average and standard deviation of the results given in Table 2 based on different approaches

Wnax/H Average Standard deviation
0.2 1.6373E—01 5.5671E—02
-0.2 1.4245E+00 7.4695E—03
0.4 7.5614E—01 8.4475E—03
—-04 1.2536E + 00 5.1992E—-03
0.6 9.0141E—-01 1.8527E—02
-0.6 1.2161E+00 1.4038E—02
0.8 1.0145E+ 00 2.7555E-02
—0.8 1.2367E + 00 2.3215E-02
1 1.0944E + 00 4.2860E—02
-1 1.2634E+ 00 3.7858E—02
Table 4

Comparison between the average obtained in Table 3, and the results based on (a) single-mode approach, i.e., Eq. (64);
(b) simplified multi-mode approach, i.e., Eq. (58)

W pax| H Results based on the single mode  Average Percentage error between the
approach average and the single-mode
approach
(a)
0.2 0.147 1.6373E—01 1.18%
—0.2 1.4211 1.4245E + 00 0.24%
0.4 0.7649 7.5614E—01 0.62%
—0.4 1.2588 1.2536E + 00 0.36%
0.6 0.9262 9.0141E—01 1.75%
—0.6 1.2346 1.2161E+ 00 1.31%
0.8 1.0438 1.0145E + 00 2.07%
—0.8 1.2608 1.2367E + 00 1.70%
1 1.1535 1.0944E + 00 4.18%
—1 1.3155 1.2634E + 00 3.68%
W nax/ H Results based on the simplified Average obtained in Percentage error between the
multi-mode approach Table 3 average and the simplified multi-
mode approach
(b)
0.2 0.1375 1.6373E—01 1.85%
—0.2 1.4207 1.4245E + 00 0.27%
0.4 0.7585 7.5614E—01 0.17%
-0.4 1.2562 1.2536E+ 00 0.18%
0.6 0.9142 9.0141E—01 0.90%
—0.6 1.2276 1.2161E+00 0.82%
0.8 1.0238 1.0145E+ 00 0.66%
—0.8 1.2467 1.2367E + 00 0.71%
1 1.1226 1.0944E + 00 2.00%
-1 1.2913 1.2634E + 00 1.97%
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Forced vibration frequency ratio w/w; for FCRP with different aspect ratios subjected to harmonic distributed force

Py=0.2 (Eq. (61))

A=W, H a=1 x=0.8 x=0.6 =04 x=0.2
+0.2 0.1475 0.1479 0.1492 0.1509 0.1523
-0.2 1.4218 1.4218 1.4220 1.4222 1.4223
+04 0.7660 0.7664 0.7673 0.7687 0.7698
-0.4 1.2596 1.2598 1.2605 1.2613 1.2619
+0.6 0.9285 0.9291 0.9308 0.9333 0.9353
—-0.6 1.2364 1.2368 1.2382 1.2400 1.2415
+0.8 1.0476 1.0484 1.0512 1.0551 1.0583
—-0.8 1.2639 1.2646 1.2669 1.2701 1.2728
+1 1.1588 1.1600 1.1640 1.1694 1.1739
-1 1.3201 1.3212 1.3247 1.3295 1.3335

1.5

F=2 .
(9D first fnrrpula’ti Fy=5 (9D)
1.0+
8
. E =4+
z
F,=02 ,
0.5 4 (9D first formulation)
0.0 t T + 1 + t } + 1 + 1 !
0.0 0.5 1.0 1.5 2.0 25 3.0 3.5

wloy

Fig. 3. Comparison of the forced response of a FCRP (¢ = 1) subjected to harmonic distributed forces F;,=0.2 , F,=2,
and F,;=35, obtained with present model Eq. (58)

used for relatively small amplitudes of vibration, up to 0.5 times the plate thickness, for all of the

levels of excitation considered.

In Table 6, the non-linear frequencies obtained by the single-mode model for different
amplitudes of vibrations are compared with those obtained by other models [3,31,33,34], and with
the multi-dimensional model. It can be concluded that for amplitudes of vibration up to 1* the
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Table 6

Comparison of free vibration frequency ratios w/w; for immovable fully clamped square isotropic plates

W pax/ H Ref. [33] Ref. [34] Ref. [31] Ref. [31] 1-D present work 9-D Ref. [3]
0.2 1.0068 1.0095 1.0079 1.0072 1.0070

0.6 1.0600 1.0825 1.0632 1.0647 1.0632 1.0607

1 1.1599 1.2149 1.1670 1.1668 1.1670 1.1573
Table 7

Forced vibration frequency ratio w/w; for a simply supported square plate subjected to harmonic distributed force
Py=0.2 (P4=873.82N/m’

A=W/ H Eq. (61) ANM [32] Simple elliptic FEM + Finite element 54
response [30] linearization [25] d.o.f. [30]
+0.2 0.193985 0.2374288 0.1944 0.1622 0.1932
-0.2 1.426755 1.4333909 1.4281 1.4235 1.4274
+0.4 0.804378 0.8154793 0.8102 0.8052
—0.4 1.282975 1.2880868 1.2874 1.2839
+0.6 0.998339 1.0145738 1.0084 0.9506 0.9984
—0.6 1.289450 1.2990543 1.2983 1.2531 1.2898
+0.8 1.155506 1.1800401 1.1703 1.1528
—-0.8 1.354659 1.3719442 1.3686 1.3524
+1 1.30945 1.3436439 1.3283 1.2075 1.3004
-1 1.454139 1.4809742 1.4276 1.3632 1.4460

plate thickness, the values of free vibration frequency ratios w/w;, obtained by the single-mode
model, or by the multi-mode model, are comparable with those obtained by the others models.
This justifies use of the single-mode model for estimating in the free response case the non-linear
resonance frequencies.

5. SSRP and CCCSSRP

Some results, based on the approach developed in above sections, are presented here,
corresponding to SSRP and CCCSSRP. In Table 7 and Fig. 4, comparison is made between the
results obtained here, based on the single-mode approach, for SSRP subjected to a harmonic
distributed forces, with the results obtained in Ref. [25] via a finite element formulation. It can be
seen that the single-mode model gives results which are very close to those previously published
for amplitudes of vibration up to about 1* the plate thickness. Details concerning the simply
supported plate parameters calculation are given in Appendix C.

Table 8 and Fig. 5 correspond to the single-mode approach applied to the case of
CCCSSRP.
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Fig. 4. Comparison of the forced response of a SSRP (x = 1) subjected to harmonic distributed forces F,;=0.2, obtained

with present model Eq. (61), with a F.E. Model [25].

Table 8

Forced vibration frequency ratio w/w; for a CCCSS square plate subjected to harmonic distributed force Py
A:Wmax/H P():Ol P0:02
+0.2 0.7233 0.1528
—0.2 1.2341 1.4223
+0.4 0.9180 0.7699
-0.4 1.1587 1.2620
+0.6 1.0207 0.9356
—0.6 1.1727 1.2417
+0.8 1.1162 1.0587
—0.8 1.2230 1.2731
+1 1.2163 1.1744
-1 1.2959 1.3339

6. General conclusion

A semi-analytical approach to the non-linear dynamic response problem of beams has been
developed, based on Lagrange’s equations, and the harmonic balance method in Refs. [9,10]. This
method has been successfully used here to determine the amplitude frequency dependence for the
non-linear steady state periodic forced vibrations of FCRP. The dynamic problem is reduced to a
set of non-linear algebraic equations depending on the classical rigidity and mass tensors, and a
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Fig. 5. Forced response of a CCCSSRP (o =1) subjected to harmonic distributed force F,; obtained with present model
(Eq. (61)).

fourth order tensor due to the non-linearity. The single-mode analysis is presented here for the
free and forced cases, leading to results which are in good agreement with those published
previously.

An approach similar to that used in Refs. [11,12], for solving the multi-dimensional Duffing
equation, for the non-linear free and NLSSPFR vibrations of beams, and the non-linear free
vibrations of FCRP has been applied here to the NLSSPFR of FCRP. It has enabled explicit
determination of the non-linear multi-mode steady state periodic forced response, for relatively
small but finite vibration amplitudes, up to 0.8 times the plate thickness. The form of the explicit
solution appears as a generalization to the non-linear case of the classical linear forced modal
response. This may appear as one more step towards the development of the ““non-linear modal
analysis theory”” mentioned in Refs. [11,12]. The single-mode model may be used to describe the
dynamic problem, for vibration amplitudes up to 0.6 times the plate thickness, for the NLSSPFR
of FCRP, and up to once the plate thickness for the NLSSPFR of SSRP. For higher amplitudes
of vibrations, better results have been obtained by using a simplified multi-mode model for the
steady state periodic forced response.

In addition to a better estimate of the non-linear frequency response function for a given level
of excitation, the multi-mode simplified model makes it possible to obtain directly the amplitude-
dependent deflection shapes of the rectangular plates at large vibration amplitudes, which is one
of the most important features of the NLSSPFR of such structures at large vibration amplitudes,
due to its important effect on curvatures and non-linear stresses.
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Appendix A. Tensors definitions

mj = pH /S wi(x, )wi(x, y) dx dy,
Pw, 8w\ [Pw;  Pw
;= | D[ZE : 3 3
ky /s <ax2 * ay2> <6x2 " 6y2>dXdy

) - GENEE- GG

Wi, y) = Hiy (%3 ) = Hw(x"5")

ab
? D
w? pHbY
ki  DaH?
k; oB»
¢ = pH’ab,
i
b,'j]d B DaH2
b:jkl b

25

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

A.1. Linear and non-linear modal parameters for the FCRP first non-linear mode shape (aspect

ratio «=0.6)

(1) Values of non-linear FCRP modal parameters: by, for the first non-linear FCRP mode shape

by,;; = 1461.2099 (MFB), b;,,, = 1586.7826 (BFB),
by, = 609.1280
by, = 178.0239
by =964.3785

%k

%k

beyyy =202.5182

%k

Bly,, = — 2298.7265

%k

beyyy = 1164.5572

—

by = — 198.9794
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(2) Rigidity matrix for the first non-linear mode shape of FCRP with an aspect ratio 4=0.6
expressed in the BFB

[674.4143  —86.1874 —67.4566  —86.1860 68.1604 53.3234 —67.4299 53.3234 41.7161
—86.1874 15 558.7014 —215.8281 68.1604 —692.9366 170.3977 53.3234 —542.1252 133.3061
—67.4565 —215.8281 91 540.9905  53.3234 170.3977 —1850.0956 41.7161 133.3061 —1447.5055
—86.1860 68.1604 53.3234 3271.1858  —692.9313  —542.1285  —215.5138 170.3977 133.3061

{kﬂ = | 68.1604 —692.9366 170.3977  —692.9313 23 556.5089 —1732.6789 170.3977  —1732.5269 425.9869
53.3234 170.3977  —1850.0956 —542.1285 —1732.6789 109 839.1056  133.3061 425.9869 —4626.2467
—67.4299 53.3234 41.7161 —215.5138  170.3977 133.3061 14 391.9895 —1850.0548 —1447.3859
53.3234  —542.1252 133.3061 1703977  —1732.5269 425.9869 —1850.0548 44 977.6201  —4625.5414

| 41.7161 1333061  —1447.5055 133.3061 425.9869 —4626.2467 —1447.3859 —4625.5414 15 0903.9226 |

(3) First nine SSFCRP linear mode shapes (2=0.6)

[0.9994 [0.0329 ] [0.0045 ] [0.0054 ] [ 0.0037
0.0055 0.0041 0.0217 -0.9954 -0.0920
0.0007 0.0006 0.0005 -0.0026 -0.0024
0.0329 -0.9987 0.0178 -0.0005 -0.0343
¢, = |-0.0020 [, &%= ]-00342|, d;= | 00106 |, ¢, = |-0.0903 |, 5= | 0.9919 [,
-0.0004 -0.0056 0.0013 0.0002 0.0195
0.0052 -0.0181 -0.9976 -0.0211 0.0032
-0.0012 0.0020 -0.0611 -0.0249 0.0779
[ -0.0003 | | 0.0007 | | -0.0127 | | 0.0002 | | 0.0004 |
[0.0012 [-0.0007 ] [ 0.0006 ] [0.0002
-0.0164 -0.0025 0.0023 0.0010
-0.0015 0.9937 -0.1102 -0.0206
0.0059 -0.0000 -0.0048 0.0012
¢y = |-0.0791 |, ;= |-0.0000 |, dg= [-0.0196|, ¢y = | 0.0053
-0.0054 0.1073 0.9879 -0.1097
-0.0625 0.0001 -0.0003 -0.0100
0.9938 0.0006 -0.0009 -0.0435
| 0.0427 | | 0.0325 | | 0.1070 | | 0.9927 |

The above vector components are given in the BFB = {w|, w|3, W|s, W3, W33, W3s, We;, We3, Wes ).
(4) Diagonal rigidity matrix for the first non-linear mode shape of FCRP with an aspect ratio
0=0.6 expressed in MFB
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[670.4738
32425882
14 2612275
15 4832756
k] = 23 475.3007

45 040.8070
91 294.6209
109 581.9417

151 664.2037 |

A.2. Linear and non-linear modal parameters for the FCRP first non-linear mode shape aspect ratio

=1

(1) Values of non-linear FCRP modal parameters: 5;11 for the first non-linear FCRP mode shape

=1

%k

%k

by, = —6.1729

a

by = — 2177.8035

—

by, = — 540.29690

—

by = — 14.4508

—

—%

—%

by, 1, =2037.8700

—

by, 1y = 505.4647.

(2) Rigidity matrix for the first non-linear mode
expressed in the BFB

[1303.8427 —239.4063 —187.3238  —239.4063 189.3345
—239.4063 17 552.0347 —598.8730 189.3345  —1924.8110

—187.3238  —598.8730 96 135.4248  148.1207 473.3270
—239.4063  189.3345 148.1207 17 552.0347 —1924.8110
{kf] = | 189.3345 19248110  473.3270  —1924.8110 48 803.1047
148.1207 4733270  —5139.0690 —1505.8742 —4812.4667

—187.3238  148.1207 115.8782 —598.8730 473.3270
148.1207  —1505.8742  370.2947 473.3270  —4812.4667

| 1158782 370.2947  —4020.5685  370.2947 1183.2969

byi1; =2782.9122 (MFB), b;,;, = 3001.8788 (BFB),

shape of FCRP with an aspect ratio o=1

148.1207 —187.3238 148.1207 115.8782
473.3270 148.1207 —1505.8742 370.2947
—5139.0690 115.8782 370.2947 —4020.5685
—1505.8742  —598.8730 473.3270 370.2947
—4812.4667 473.3270 —4812.4667 1183.2970

155998.4600  370.2947 1183.2969 —12 848.8262
370.2947 96 135.4248  —5139.0690 —4020.5685
1183.2969 —5139.0690 155998.4600 —12 848.8262

—12 848.8262 —4020.5685 —12 848.8262 317 759.6649 |
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(3) First nine SSFCRP linear mode shapes (a=1)

[-0.9998 ] [ 0.0000 T [0.0197 [-0.0049 [ 0.0000 ]
-0.0142 -0.7070 -0.7041 0.0633 0.0051
-0.0020 -0.0060 -0.0039 0.0062 -0.7040
-0.0142 0.7070 -0.7041 0.0633 -0.0051
¢, = | 00031 |, &, = | 0.0000 |, ¢;= [-0.0892|, &, = |-0.99%1 |, 5= | 0.0000
-0.0009 0.0099 -0.0083 -0.0432 -0.0656
-0.0020 0.0060 -0.0039 0.0062 0.7040
0.0009 -0.0099 -0.0083 -0.0432 0.0656
| 0.0004 | | 0.0000 | | 0.0013 | | 0.0003 | | 0.0000 |

[-0.0025 7] [ 0.0000 T [-0.0015] [ 0.0003 ]

-0.0048 0.0105 0.0039 0.0015

0.7040 -0.0655 0.0635 -0.0162

-0.0048 -0.0105 0.0039 0.0015

by = | 0.0028 |, ;= | 0.0000 |, dbg=|0.0619 |, dg= | 0.0070

0.0615 0.7040 -0.6987 -0.0782

0.7040 0.0655 0.0635 -0.0162

0.0615 -0.7040 -0.6987 -0.0782

| 0.0326 | 0.0000 | | -0.1084 | | 0.9936 |

The above vector components are given in the BFB = {w}, |3, W|s, W3, W33, W3s, W5[, We3, Wes )
4) Diagonal rigidity matrix for the first non-linear mode shape of FCRP with an aspect ratio o.=1
g guairy 4 )4
expressed in MFB

[1295.9230

17 328.5273

17 488.9860
148 6253226

k| = 95 511.7737
95 653.9895

155 357.1090

156 054.9693
319 9223785 |
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Appendix B. Details of numerical comparisons for a distributed force

B.1. The single-mode approximation in the BFB
(ki — o*mi)q + 3b1111q; = F sin a)t/ wi(x,y) dxdy.
s

In the present model

Wi(x,p, 1) = Hw(x", y)q1(0),

q1(?) = a; sin wt

which leads to

wi(x,y) = Hayw (x", "),
and

Wmar = Haywi (3.3)-

In the model presented in Ref. [30]:

wi(x, 1) = HAq(¢(x, y),
SO

Wmax = HA.

To compare the present results with those given in Ref. [30],

A=aw, (%’ 3)-
Eq. (B.1) can be written in non-dimensional form as
DaH? DaH?, .
< B —5 ki — o PHS“bmn)al +3 Tblllla? =0

29

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

Substituting the expression for the non-linear frequency w? = w™2D/(pHb*) in Eq. (B.9) leads to

l)aH2 * *) ok * 3
b3 ((kn_w mll)"l+%bllllal):°C

(B.10)

The right-hand side of Eq. (B.10) can be expressed using non-dimensional parameters as follows:

b4 * % * * *
K, — 3p 0 dx"d
11 o ’”11+ 1111“1 1DH//S—* wi(x,y )dx dy

which is equivalent to:

"2 . @ Fyb*
1 —— + 3] L= // wi(x",yH)dx"d
a)l2 2 ““kl1 alDHk11 ( y) y

(B.11)

(B.12)
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* 2 *
co_ 14 3b 1112 fi
IS SR
) 11 1

- Fb4
0 // W,y ) dy

In Ref. [30], the non-dimensional force Py is defined as
P it o= JPL02)dxdy
pHe ffd) (x, y)dxdy

which can also be written as

with

Py =

(B.13)

(B.14)

(B.15,16)

in which ¢ is the normalized mode shape, and Fy is the amplitude of the external applied force

(N/m?). Combining Eqgs. (B.4) and (B.6) leads to
D(x,y) = _Wl(x V).
Substituting the expression for ¢ given in Eq. (B.17) into (B.16) gives:
ho _ [etndcdy Ry ﬂff widedy g

P, = -
pH2w? [ $*(x,p) dx dy pH>—= )
pr4

A . Fob* A fF 1
= dx d SRS S (S EA
a // wp ax yHDkTI a le 1(2 Z)k“

B.2. The single-mode approximation in the MFB

kll

ll

In the same manner, to compare the present results with those of Ref. [30],

A= a1,
(kii — o*mi)g + 3bnng; = FOSiIlCUl/ ¢1(x,y)dxdy.
s

Eq. (B.20) can be written in non-dimensional form as

DaH? . PP S U DaH?.. 5 _
<Tk11 — w’pHabiy, )a +3 Tbllllal =«
which is equivalent, if non-dimensional parameters are used, to
- Fob
ki — @my, +3by,a) = /¢(x,y )dx"dy”

which can be written as

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)
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with
4
7, _Fob/ d1(x",y)dx"dy" (B.24)
and
po—_Fo__ [lotepdxdy K a/AJf¢ dxdy bt
pH0> — [[ Qv ) dxdy L Do @/A [[ ¢ dxdy ok
pHb ot
Fb* AT WS
¢y dxdy——— == b= ¢ (L)1 (B.25)
/ 1 HDk“ ai kll 1(2 Z)k“

Appendix C. Simply supported plates

The linear mode shapes for a simply supported rectangular plate are given by
Wy = hsin @sinnny

a b

in which m and » are integers. The first mode shape, corresponding to m=n=1 is given by

(C.1)

wii(x,y) = h sinESin% = h sinnxsinmy’; (C2)
a

the associated non-dimensional mode is

le(x, y) = sinzx siny’. (C3)

C.1. Expressions of the axial strain energy

If the in-plane displacements are taken into account, the expression for the axial strain energy is

ow\2 ow\2] par? [ 3[/ ow\: fow\*]’
1 1 20W 1

dS=—""1/ = ds* C4
|G+ (E) | o= L3 (%) +(G) [ oo o
from Eq. (6) in which a; = a; = a; = a; = a; sin wt, we have

V,= %a‘fbnll sin4 wt (CS)

N 2 2
ow, ow,
b= [ 3|2 ! ds ** C.6
ti /s [(a 8x*>+(6y>] (©6)

3D
2H?

V,=

with
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After substitution of Eq. (C.3) into (C.6), we obtain

x 27n 8u
by e (“8+7+ 1) (C.7)

C.2. Expression for the bending strain energy

The expression for the bending strain energy is given in Ref. [14]:

AW, AW EWN [ (EW) (PW
=— 2(1 — — ds C38
Al )“ ((5a) (52 (52)) ©9
using Eq. (C.2) and (C.8), one can easily obtain
y DaHz/ ot (W 2+1 Ewr\’
PR Je2Uax ) T2\ap2
Ewr\’ W\ (EW
1 —v)o? 1 2 1 L)dx" dy". C9
(4= <8x*8y*> v ( ox*2 oy X ay (C9)
Therefore
2
i = ( ( ay"2 )
+2(1 —v)oc2 2 (W (W dx” dy’ (C.10)
ax*z 6)}*2 y M *
-
ki, = 5 (oc + 1) (C.11)
for o = 1, we have k|, = 2n*=194.8182, and b;,,, = 397*/32>118.7028.
Appendix D. Nomenclature
General notations
a,b length, width of the plate
A non-dimensional amplitude of vibration defined in the BFB by 4 = a;w(C) ,
and in the MFB by 4 = alqb (0)
ANM asymptotic-numerical method
BFB beam function basis
¢ _ J] (., y)dxdy

a parameter defined by c with ¢(x,y) representing the

JI ¢*(x, y)dxdy
normalized spatial function satisfying ¢,,..=1 [31].
plate centre

bending stiffness, D = EH?/12(1 —v?)

Young’s modulus

SRHe!
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dimensionless generalized force corresponding to concentrated force F©

f,.*d dimensionless generalized force corresponding to distributed force F

F concentrated harmonic force

F distributed harmonic force

FCRP fully clamped rectangular plate, or fully clamped rectangular plates, depending
on the context

FEM finite element method

H thickness of the plate

HFEM hierarchical finite element method.

[M], K], [B] mass matrix, linear rigidity matrix and non-linear rigidity matrix respectively

MFB modal function basis

NLSSPFR non-linear steady state periodic forced response

q; generalized co-ordinate ¢;(¢) = a; sin (wt)

S, S* dimensional and non-dimensional surfaces [0,a] x [0,b] and [0,1] x [0,1],
respectively

T kinetic energy

Uand V in-plane displacements in the x and y directions, respectively,

Vi, V,and V bending, axial and total strain energy, respectively

W(x,y,t) transverse displacement at point (x,y) on the plate

Wii(X,) basic function obtained as product of the ith clamped—clamped beam function
in the x direction with the jth clamped—clamped beam function in the y
direction

W (x*,y*,1)  linear frequency response
W .« (x*,y*,t)  non-linear frequency response

(x,») point co-ordinates
X indicates parameters expressed in the MFB
* the star exponent indicates non-dimensional parameters

Greek Letters

o the plate aspect ratio «=b/a
£, basic function contribution
modal function contribution

ol

v the Poisson ratio

p Mass density per unit volume of the plate

d)j ith linear mode shape

T Non-dimensional time parameter defined by 1 = wt
w Non-linear frequency

wr Linear frequency
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